Введите задачу...
Математический анализ Примеры
Этап 1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2
Этап 2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 2.3
Заменим все вхождения на .
Этап 3
Этап 3.1
Поскольку является константой относительно , производная по равна .
Этап 3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3
Упростим выражение.
Этап 3.3.1
Умножим на .
Этап 3.3.2
Перенесем влево от .
Этап 3.4
По правилу суммы производная по имеет вид .
Этап 3.5
Поскольку является константой относительно , производная по равна .
Этап 3.6
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.7
Умножим на .
Этап 3.8
Поскольку является константой относительно , производная по равна .
Этап 3.9
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.10
Умножим на .
Этап 3.11
Поскольку является константой относительно , производная относительно равна .
Этап 3.12
Добавим и .
Этап 4
Этап 4.1
Применим свойство дистрибутивности.
Этап 4.2
Применим свойство дистрибутивности.
Этап 4.3
Применим свойство дистрибутивности.
Этап 4.4
Объединим термины.
Этап 4.4.1
Умножим на .
Этап 4.4.2
Умножим на .
Этап 4.4.3
Умножим на .
Этап 4.4.4
Перенесем влево от .
Этап 4.4.5
Добавим и .
Этап 4.4.5.1
Перенесем .
Этап 4.4.5.2
Добавим и .
Этап 4.4.6
Вычтем из .
Этап 4.5
Изменим порядок членов.
Этап 4.6
Изменим порядок множителей в .