Математический анализ Примеры

Этап 1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 2.3
Заменим все вхождения на .
Этап 3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 4.1
Перенесем .
Этап 4.2
Применим правило степени для объединения показателей.
Этап 4.3
Добавим и .
Этап 5
Перенесем влево от .
Этап 6
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 7
Упростим.
Нажмите для увеличения количества этапов...
Этап 7.1
Изменим порядок членов.
Этап 7.2
Изменим порядок множителей в .