Введите задачу...
Математический анализ Примеры
Этап 1
С помощью запишем в виде .
Этап 2
Этап 2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3
Заменим все вхождения на .
Этап 3
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 4
Объединим и .
Этап 5
Объединим числители над общим знаменателем.
Этап 6
Этап 6.1
Умножим на .
Этап 6.2
Вычтем из .
Этап 7
Этап 7.1
Вынесем знак минуса перед дробью.
Этап 7.2
Объединим дроби.
Этап 7.2.1
Объединим и .
Этап 7.2.2
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 7.3
По правилу суммы производная по имеет вид .
Этап 7.4
Поскольку является константой относительно , производная относительно равна .
Этап 7.5
Добавим и .
Этап 7.6
Поскольку является константой относительно , производная по равна .
Этап 7.7
Упростим члены.
Этап 7.7.1
Объединим и .
Этап 7.7.2
Сократим общий множитель.
Этап 7.7.3
Перепишем это выражение.
Этап 8
Этап 8.1
Чтобы применить цепное правило, зададим как .
Этап 8.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 8.3
Заменим все вхождения на .
Этап 9
Этап 9.1
Объединим и .
Этап 9.2
Поскольку является константой относительно , производная по равна .
Этап 9.3
Объединим и .
Этап 9.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 9.5
Упростим выражение.
Этап 9.5.1
Умножим на .
Этап 9.5.2
Изменим порядок членов.