Введите задачу...
Математический анализ Примеры
Этап 1
По правилу суммы производная по имеет вид .
Этап 2
Этап 2.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 2.1.1
Чтобы применить цепное правило, зададим как .
Этап 2.1.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 2.1.3
Заменим все вхождения на .
Этап 2.2
Поскольку является константой относительно , производная по равна .
Этап 2.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.4
Перенесем влево от .
Этап 3
Этап 3.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 3.1.1
Чтобы применить цепное правило, зададим как .
Этап 3.1.2
Производная по равна .
Этап 3.1.3
Заменим все вхождения на .
Этап 3.2
По правилу суммы производная по имеет вид .
Этап 3.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.4
Поскольку является константой относительно , производная относительно равна .
Этап 3.5
Добавим и .
Этап 3.6
Умножим на .
Этап 4
Этап 4.1
Объединим термины.
Этап 4.1.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 4.1.2
Объединим числители над общим знаменателем.
Этап 4.2
Изменим порядок членов.