Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Чтобы найти точки пересечения с осью x, подставим вместо и найдем решение для .
Этап 1.2
Решим уравнение.
Этап 1.2.1
Перепишем уравнение в виде .
Этап 1.2.2
Разложим левую часть уравнения на множители.
Этап 1.2.2.1
Вынесем множитель из .
Этап 1.2.2.1.1
Вынесем множитель из .
Этап 1.2.2.1.2
Вынесем множитель из .
Этап 1.2.2.1.3
Вынесем множитель из .
Этап 1.2.2.2
Перепишем в виде .
Этап 1.2.2.3
Перепишем в виде .
Этап 1.2.2.4
Разложим на множители.
Этап 1.2.2.4.1
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 1.2.2.4.2
Избавимся от ненужных скобок.
Этап 1.2.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 1.2.4
Приравняем к .
Этап 1.2.5
Приравняем к , затем решим относительно .
Этап 1.2.5.1
Приравняем к .
Этап 1.2.5.2
Решим относительно .
Этап 1.2.5.2.1
Вычтем из обеих частей уравнения.
Этап 1.2.5.2.2
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 1.2.5.2.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 1.2.5.2.3.1
Сначала с помощью положительного значения найдем первое решение.
Этап 1.2.5.2.3.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 1.2.5.2.3.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 1.2.6
Приравняем к , затем решим относительно .
Этап 1.2.6.1
Приравняем к .
Этап 1.2.6.2
Решим относительно .
Этап 1.2.6.2.1
Добавим к обеим частям уравнения.
Этап 1.2.6.2.2
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 1.2.6.2.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 1.2.6.2.3.1
Сначала с помощью положительного значения найдем первое решение.
Этап 1.2.6.2.3.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 1.2.6.2.3.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 1.2.7
Окончательным решением являются все значения, при которых верно.
Этап 1.3
Точки пересечения с осью x в форме точки.
точки пересечения с осью x:
точки пересечения с осью x:
Этап 2
Этап 2.1
Чтобы найти точки пересечения с осью y, подставим вместо и найдем решение для .
Этап 2.2
Решим уравнение.
Этап 2.2.1
Избавимся от скобок.
Этап 2.2.2
Избавимся от скобок.
Этап 2.2.3
Упростим .
Этап 2.2.3.1
Упростим каждый член.
Этап 2.2.3.1.1
Возведение в любую положительную степень дает .
Этап 2.2.3.1.2
Умножим на .
Этап 2.2.3.2
Добавим и .
Этап 2.3
Точки пересечения с осью y в форме точки.
Точки пересечения с осью y:
Точки пересечения с осью y:
Этап 3
Перечислим пересечения.
точки пересечения с осью x:
Точки пересечения с осью y:
Этап 4