Введите задачу...
Математический анализ Примеры
Этап 1
С помощью запишем в виде .
Этап 2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 3
Этап 3.1
Чтобы применить цепное правило, зададим как .
Этап 3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3
Заменим все вхождения на .
Этап 4
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 5
Объединим и .
Этап 6
Объединим числители над общим знаменателем.
Этап 7
Этап 7.1
Умножим на .
Этап 7.2
Вычтем из .
Этап 8
Этап 8.1
Вынесем знак минуса перед дробью.
Этап 8.2
Объединим и .
Этап 8.3
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 8.4
Объединим и .
Этап 9
По правилу суммы производная по имеет вид .
Этап 10
Поскольку является константой относительно , производная относительно равна .
Этап 11
Добавим и .
Этап 12
Поскольку является константой относительно , производная по равна .
Этап 13
Этап 13.1
Объединим и .
Этап 13.2
Вынесем знак минуса перед дробью.
Этап 14
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 15
Умножим на .
Этап 16
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 17
Этап 17.1
Перенесем влево от .
Этап 17.2
Перенесем .
Этап 18
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 19
Объединим и .
Этап 20
Объединим числители над общим знаменателем.
Этап 21
Умножим на .
Этап 22
Этап 22.1
Перенесем .
Этап 22.2
Применим правило степени для объединения показателей.
Этап 22.3
Объединим числители над общим знаменателем.
Этап 22.4
Добавим и .
Этап 22.5
Разделим на .
Этап 23
Упростим .
Этап 24
Этап 24.1
Применим свойство дистрибутивности.
Этап 24.2
Упростим числитель.
Этап 24.2.1
Упростим каждый член.
Этап 24.2.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 24.2.1.2
Умножим на , сложив экспоненты.
Этап 24.2.1.2.1
Перенесем .
Этап 24.2.1.2.2
Умножим на .
Этап 24.2.1.2.2.1
Возведем в степень .
Этап 24.2.1.2.2.2
Применим правило степени для объединения показателей.
Этап 24.2.1.2.3
Добавим и .
Этап 24.2.1.3
Умножим на .
Этап 24.2.1.4
Умножим на .
Этап 24.2.2
Вычтем из .
Этап 24.3
Вынесем множитель из .
Этап 24.3.1
Вынесем множитель из .
Этап 24.3.2
Вынесем множитель из .
Этап 24.3.3
Вынесем множитель из .
Этап 24.4
Вынесем множитель из .
Этап 24.5
Перепишем в виде .
Этап 24.6
Вынесем множитель из .
Этап 24.7
Перепишем в виде .
Этап 24.8
Вынесем знак минуса перед дробью.