Введите задачу...
Математический анализ Примеры
Этап 1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2
Этап 2.1
По правилу суммы производная по имеет вид .
Этап 2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3
Поскольку является константой относительно , производная относительно равна .
Этап 2.4
Упростим выражение.
Этап 2.4.1
Добавим и .
Этап 2.4.2
Перенесем влево от .
Этап 2.5
По правилу суммы производная по имеет вид .
Этап 2.6
Поскольку является константой относительно , производная по равна .
Этап 2.7
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.8
Умножим на .
Этап 2.9
Поскольку является константой относительно , производная относительно равна .
Этап 2.10
Упростим выражение.
Этап 2.10.1
Добавим и .
Этап 2.10.2
Перенесем влево от .
Этап 3
Этап 3.1
Применим свойство дистрибутивности.
Этап 3.2
Применим свойство дистрибутивности.
Этап 3.3
Применим свойство дистрибутивности.
Этап 3.4
Объединим термины.
Этап 3.4.1
Умножим на .
Этап 3.4.2
Умножим на , сложив экспоненты.
Этап 3.4.2.1
Перенесем .
Этап 3.4.2.2
Умножим на .
Этап 3.4.2.2.1
Возведем в степень .
Этап 3.4.2.2.2
Применим правило степени для объединения показателей.
Этап 3.4.2.3
Добавим и .
Этап 3.4.3
Умножим на .
Этап 3.4.4
Умножим на .
Этап 3.4.5
Добавим и .