Математический анализ Примеры

Trovare la Derivata - d/dx x^2 натуральный логарифм от 2x+1
Этап 1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2
Производная по равна .
Этап 2.3
Заменим все вхождения на .
Этап 3
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 3.1
Объединим и .
Этап 3.2
По правилу суммы производная по имеет вид .
Этап 3.3
Поскольку является константой относительно , производная по равна .
Этап 3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.5
Умножим на .
Этап 3.6
Поскольку является константой относительно , производная относительно равна .
Этап 3.7
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 3.7.1
Добавим и .
Этап 3.7.2
Объединим и .
Этап 3.7.3
Перенесем влево от .
Этап 3.8
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 5
Объединим числители над общим знаменателем.
Этап 6
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 6.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 6.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 6.1.2
Упростим путем переноса под логарифм.
Этап 6.1.3
Применим свойство дистрибутивности.
Этап 6.1.4
Перепишем, используя свойство коммутативности умножения.
Этап 6.1.5
Умножим на .
Этап 6.1.6
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 6.1.6.1
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 6.1.6.1.1
Перенесем .
Этап 6.1.6.1.2
Умножим на .
Этап 6.1.6.2
Упростим путем переноса под логарифм.
Этап 6.1.6.3
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 6.1.6.3.1
Применим правило степени и перемножим показатели, .
Этап 6.1.6.3.2
Умножим на .
Этап 6.2
Изменим порядок множителей в .