Математический анализ Примеры

Этап 1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 2.3
Заменим все вхождения на .
Этап 3
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 3.1
Поскольку является константой относительно , производная по равна .
Этап 3.2
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Объединим и .
Этап 3.2.2
Объединим и .
Этап 3.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.4
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 3.4.1
Умножим на .
Этап 3.4.2
Объединим и .
Этап 3.4.3
Объединим и .
Этап 4
Возведем в степень .
Этап 5
Возведем в степень .
Этап 6
Применим правило степени для объединения показателей.
Этап 7
Сократим выражение, путем отбрасывания общих множителей.
Нажмите для увеличения количества этапов...
Этап 7.1
Добавим и .
Этап 7.2
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 7.2.1
Вынесем множитель из .
Этап 7.2.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 7.2.2.1
Вынесем множитель из .
Этап 7.2.2.2
Сократим общий множитель.
Этап 7.2.2.3
Перепишем это выражение.
Этап 7.3
Вынесем знак минуса перед дробью.
Этап 8
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 9
Умножим на .