Введите задачу...
Математический анализ Примеры
Этап 1
Поскольку является константой относительно , производная по равна .
Этап 2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 4
Объединим и .
Этап 5
Объединим числители над общим знаменателем.
Этап 6
Этап 6.1
Умножим на .
Этап 6.2
Вычтем из .
Этап 7
Вынесем знак минуса перед дробью.
Этап 8
Объединим и .
Этап 9
Объединим и .
Этап 10
Умножим на .
Этап 11
Объединим и .
Этап 12
Этап 12.1
Перенесем влево от .
Этап 12.2
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 13
Вынесем множитель из .
Этап 14
Этап 14.1
Вынесем множитель из .
Этап 14.2
Сократим общий множитель.
Этап 14.3
Перепишем это выражение.