Введите задачу...
Математический анализ Примеры
Этап 1
С помощью запишем в виде .
Этап 2
Этап 2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3
Заменим все вхождения на .
Этап 3
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 4
Объединим и .
Этап 5
Объединим числители над общим знаменателем.
Этап 6
Этап 6.1
Умножим на .
Этап 6.2
Вычтем из .
Этап 7
Этап 7.1
Вынесем знак минуса перед дробью.
Этап 7.2
Объединим и .
Этап 7.3
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 8
Этап 8.1
Чтобы применить цепное правило, зададим как .
Этап 8.2
Производная по равна .
Этап 8.3
Заменим все вхождения на .
Этап 9
Этап 9.1
Объединим и .
Этап 9.2
Поскольку является константой относительно , производная по равна .
Этап 9.3
Упростим члены.
Этап 9.3.1
Объединим и .
Этап 9.3.2
Сократим общий множитель.
Этап 9.3.3
Перепишем это выражение.
Этап 9.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 9.5
Умножим на .
Этап 10
Этап 10.1
Разделим дроби.
Этап 10.2
Переведем в .
Этап 10.3
Разделим на .
Этап 10.4
Изменим порядок множителей в .