Введите задачу...
Математический анализ Примеры
Этап 1
По правилу суммы производная по имеет вид .
Этап 2
Этап 2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3
Умножим на .
Этап 3
Этап 3.1
Поскольку является константой относительно , производная по равна .
Этап 3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3
Умножим на .
Этап 4
Этап 4.1
Поскольку является константой относительно , производная по равна .
Этап 4.2
Перепишем в виде .
Этап 4.3
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 4.3.1
Чтобы применить цепное правило, зададим как .
Этап 4.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.3.3
Заменим все вхождения на .
Этап 4.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.5
Перемножим экспоненты в .
Этап 4.5.1
Применим правило степени и перемножим показатели, .
Этап 4.5.2
Умножим на .
Этап 4.6
Умножим на .
Этап 4.7
Возведем в степень .
Этап 4.8
Применим правило степени для объединения показателей.
Этап 4.9
Вычтем из .
Этап 4.10
Умножим на .
Этап 5
Этап 5.1
Перепишем выражение, используя правило отрицательных степеней .
Этап 5.2
Объединим и .
Этап 5.3
Изменим порядок членов.