Введите задачу...
Математический анализ Примеры
,
Этап 1
Этап 1.1
Продифференцируем обе части уравнения.
Этап 1.2
Продифференцируем левую часть уравнения.
Этап 1.2.1
По правилу суммы производная по имеет вид .
Этап 1.2.2
Найдем значение .
Этап 1.2.2.1
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2.2.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.2.2.3
Объединим и .
Этап 1.2.2.4
Объединим числители над общим знаменателем.
Этап 1.2.2.5
Упростим числитель.
Этап 1.2.2.5.1
Умножим на .
Этап 1.2.2.5.2
Вычтем из .
Этап 1.2.2.6
Вынесем знак минуса перед дробью.
Этап 1.2.3
Найдем значение .
Этап 1.2.3.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 1.2.3.1.1
Чтобы применить цепное правило, зададим как .
Этап 1.2.3.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2.3.1.3
Заменим все вхождения на .
Этап 1.2.3.2
Перепишем в виде .
Этап 1.2.3.3
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.2.3.4
Объединим и .
Этап 1.2.3.5
Объединим числители над общим знаменателем.
Этап 1.2.3.6
Упростим числитель.
Этап 1.2.3.6.1
Умножим на .
Этап 1.2.3.6.2
Вычтем из .
Этап 1.2.3.7
Вынесем знак минуса перед дробью.
Этап 1.2.3.8
Объединим и .
Этап 1.2.3.9
Объединим и .
Этап 1.2.3.10
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 1.2.4
Упростим.
Этап 1.2.4.1
Перепишем выражение, используя правило отрицательных степеней .
Этап 1.2.4.2
Умножим на .
Этап 1.3
Поскольку является константой относительно , производная относительно равна .
Этап 1.4
Преобразуем уравнение, приравняв левую часть к правой.
Этап 1.5
Решим относительно .
Этап 1.5.1
Вычтем из обеих частей уравнения.
Этап 1.5.2
Умножим обе части на .
Этап 1.5.3
Упростим.
Этап 1.5.3.1
Упростим левую часть.
Этап 1.5.3.1.1
Упростим .
Этап 1.5.3.1.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 1.5.3.1.1.2
Сократим общий множитель .
Этап 1.5.3.1.1.2.1
Сократим общий множитель.
Этап 1.5.3.1.1.2.2
Перепишем это выражение.
Этап 1.5.3.1.1.3
Сократим общий множитель .
Этап 1.5.3.1.1.3.1
Сократим общий множитель.
Этап 1.5.3.1.1.3.2
Перепишем это выражение.
Этап 1.5.3.2
Упростим правую часть.
Этап 1.5.3.2.1
Упростим .
Этап 1.5.3.2.1.1
Сократим общий множитель .
Этап 1.5.3.2.1.1.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 1.5.3.2.1.1.2
Вынесем множитель из .
Этап 1.5.3.2.1.1.3
Вынесем множитель из .
Этап 1.5.3.2.1.1.4
Сократим общий множитель.
Этап 1.5.3.2.1.1.5
Перепишем это выражение.
Этап 1.5.3.2.1.2
Объединим и .
Этап 1.5.3.2.1.3
Вынесем знак минуса перед дробью.
Этап 1.5.4
Разделим каждый член на и упростим.
Этап 1.5.4.1
Разделим каждый член на .
Этап 1.5.4.2
Упростим левую часть.
Этап 1.5.4.2.1
Сократим общий множитель .
Этап 1.5.4.2.1.1
Сократим общий множитель.
Этап 1.5.4.2.1.2
Разделим на .
Этап 1.5.4.3
Упростим правую часть.
Этап 1.5.4.3.1
Умножим числитель на величину, обратную знаменателю.
Этап 1.5.4.3.2
Сократим общий множитель .
Этап 1.5.4.3.2.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 1.5.4.3.2.2
Вынесем множитель из .
Этап 1.5.4.3.2.3
Сократим общий множитель.
Этап 1.5.4.3.2.4
Перепишем это выражение.
Этап 1.5.4.3.3
Вынесем знак минуса перед дробью.
Этап 1.6
Заменим на .
Этап 1.7
Найдем значение в .
Этап 1.7.1
Заменим в этом выражении переменную на .
Этап 1.7.2
Заменим в этом выражении переменную на .
Этап 1.7.3
Единица в любой степени равна единице.
Этап 1.7.4
Применим правило умножения к .
Этап 2
Этап 2.1
Используем угловой коэффициент и координаты заданной точки вместо и в уравнении прямой с угловым коэффициентом и заданной точкой , выведенном из уравнения с угловым коэффициентом .
Этап 2.2
Упростим уравнение и оставим его в виде уравнения прямой с угловым коэффициентом и заданной точкой.
Этап 2.3
Решим относительно .
Этап 2.3.1
Упростим .
Этап 2.3.1.1
Перепишем.
Этап 2.3.1.2
Упростим путем добавления нулей.
Этап 2.3.1.3
Применим свойство дистрибутивности.
Этап 2.3.1.4
Объединим и .
Этап 2.3.1.5
Умножим .
Этап 2.3.1.5.1
Умножим на .
Этап 2.3.1.5.2
Объединим и .
Этап 2.3.1.5.3
Объединим и .
Этап 2.3.1.6
Упростим каждый член.
Этап 2.3.1.6.1
Перенесем в числитель, используя правило отрицательных степеней .
Этап 2.3.1.6.2
Перенесем в числитель, используя правило отрицательных степеней .
Этап 2.3.1.6.3
Умножим на , сложив экспоненты.
Этап 2.3.1.6.3.1
Перенесем .
Этап 2.3.1.6.3.2
Умножим на .
Этап 2.3.1.6.3.2.1
Возведем в степень .
Этап 2.3.1.6.3.2.2
Применим правило степени для объединения показателей.
Этап 2.3.1.6.3.3
Запишем в виде дроби с общим знаменателем.
Этап 2.3.1.6.3.4
Объединим числители над общим знаменателем.
Этап 2.3.1.6.3.5
Добавим и .
Этап 2.3.1.6.4
Умножим на , сложив экспоненты.
Этап 2.3.1.6.4.1
Перенесем .
Этап 2.3.1.6.4.2
Умножим на .
Этап 2.3.1.6.4.2.1
Возведем в степень .
Этап 2.3.1.6.4.2.2
Применим правило степени для объединения показателей.
Этап 2.3.1.6.4.3
Запишем в виде дроби с общим знаменателем.
Этап 2.3.1.6.4.4
Объединим числители над общим знаменателем.
Этап 2.3.1.6.4.5
Добавим и .
Этап 2.3.1.6.5
Перепишем в виде .
Этап 2.3.1.6.5.1
С помощью запишем в виде .
Этап 2.3.1.6.5.2
Применим правило степени и перемножим показатели, .
Этап 2.3.1.6.5.3
Умножим на .
Этап 2.3.1.6.5.4
Умножим на .
Этап 2.3.1.6.5.5
Сократим общий множитель и .
Этап 2.3.1.6.5.5.1
Вынесем множитель из .
Этап 2.3.1.6.5.5.2
Сократим общие множители.
Этап 2.3.1.6.5.5.2.1
Вынесем множитель из .
Этап 2.3.1.6.5.5.2.2
Сократим общий множитель.
Этап 2.3.1.6.5.5.2.3
Перепишем это выражение.
Этап 2.3.1.6.5.6
Перепишем в виде .
Этап 2.3.2
Добавим к обеим частям уравнения.
Этап 2.3.3
Запишем в форме .
Этап 2.3.3.1
Изменим порядок членов.
Этап 2.3.3.2
Избавимся от скобок.
Этап 3