Математический анализ Примеры

Оценить предел предел ( натуральный логарифм x)/(x^2-1), когда x стремится к 1
Этап 1
Применим правило Лопиталя.
Нажмите для увеличения количества этапов...
Этап 1.1
Найдем предел числителя и предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Возьмем предел числителя и предел знаменателя.
Этап 1.1.2
Найдем предел числителя.
Нажмите для увеличения количества этапов...
Этап 1.1.2.1
Внесем предел под знак логарифма.
Этап 1.1.2.2
Найдем предел , подставив значение для .
Этап 1.1.2.3
Натуральный логарифм равен .
Этап 1.1.3
Найдем предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 1.1.3.1
Вычислим предел.
Нажмите для увеличения количества этапов...
Этап 1.1.3.1.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.1.3.1.2
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 1.1.3.1.3
Найдем предел , который является константой по мере приближения к .
Этап 1.1.3.2
Найдем предел , подставив значение для .
Этап 1.1.3.3
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 1.1.3.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.1.3.3.1.1
Единица в любой степени равна единице.
Этап 1.1.3.3.1.2
Умножим на .
Этап 1.1.3.3.2
Вычтем из .
Этап 1.1.3.3.3
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.1.3.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 1.3
Найдем производную числителя и знаменателя.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Продифференцируем числитель и знаменатель.
Этап 1.3.2
Производная по равна .
Этап 1.3.3
По правилу суммы производная по имеет вид .
Этап 1.3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.5
Поскольку является константой относительно , производная относительно равна .
Этап 1.3.6
Добавим и .
Этап 1.4
Умножим числитель на величину, обратную знаменателю.
Этап 1.5
Объединим множители.
Нажмите для увеличения количества этапов...
Этап 1.5.1
Умножим на .
Этап 1.5.2
Возведем в степень .
Этап 1.5.3
Возведем в степень .
Этап 1.5.4
Применим правило степени для объединения показателей.
Этап 1.5.5
Добавим и .
Этап 2
Вычислим предел.
Нажмите для увеличения количества этапов...
Этап 2.1
Вынесем член из-под знака предела, так как он не зависит от .
Этап 2.2
Разобьем предел с помощью правила частного пределов при стремлении к .
Этап 2.3
Найдем предел , который является константой по мере приближения к .
Этап 2.4
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 3
Найдем предел , подставив значение для .
Этап 4
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 4.1
Объединим.
Этап 4.2
Умножим на .
Этап 4.3
Единица в любой степени равна единице.
Этап 4.4
Умножим на .
Этап 5
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: