Математический анализ Примеры

Оценить предел предел (tan(x)-1)/(4x-pi), если x стремится к pi/4
Этап 1
Применим правило Лопиталя.
Нажмите для увеличения количества этапов...
Этап 1.1
Найдем предел числителя и предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Возьмем предел числителя и предел знаменателя.
Этап 1.1.2
Найдем предел числителя.
Нажмите для увеличения количества этапов...
Этап 1.1.2.1
Вычислим предел.
Нажмите для увеличения количества этапов...
Этап 1.1.2.1.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.1.2.1.2
Перенесем предел внутрь тригонометрической функции, поскольку тангенс — непрерывная функция.
Этап 1.1.2.1.3
Найдем предел , который является константой по мере приближения к .
Этап 1.1.2.2
Найдем предел , подставив значение для .
Этап 1.1.2.3
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 1.1.2.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.1.2.3.1.1
Точное значение : .
Этап 1.1.2.3.1.2
Умножим на .
Этап 1.1.2.3.2
Вычтем из .
Этап 1.1.3
Найдем предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 1.1.3.1
Вычислим предел.
Нажмите для увеличения количества этапов...
Этап 1.1.3.1.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.1.3.1.2
Вынесем член из-под знака предела, так как он не зависит от .
Этап 1.1.3.1.3
Найдем предел , который является константой по мере приближения к .
Этап 1.1.3.2
Найдем предел , подставив значение для .
Этап 1.1.3.3
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 1.1.3.3.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.1.3.3.1.1
Сократим общий множитель.
Этап 1.1.3.3.1.2
Перепишем это выражение.
Этап 1.1.3.3.2
Вычтем из .
Этап 1.1.3.3.3
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.1.3.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 1.3
Найдем производную числителя и знаменателя.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Продифференцируем числитель и знаменатель.
Этап 1.3.2
По правилу суммы производная по имеет вид .
Этап 1.3.3
Производная по равна .
Этап 1.3.4
Поскольку является константой относительно , производная относительно равна .
Этап 1.3.5
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.3.5.1
Добавим и .
Этап 1.3.5.2
Выразим через синусы и косинусы.
Этап 1.3.5.3
Применим правило умножения к .
Этап 1.3.5.4
Единица в любой степени равна единице.
Этап 1.3.6
По правилу суммы производная по имеет вид .
Этап 1.3.7
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.3.7.1
Поскольку является константой относительно , производная по равна .
Этап 1.3.7.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.7.3
Умножим на .
Этап 1.3.8
Поскольку является константой относительно , производная относительно равна .
Этап 1.3.9
Добавим и .
Этап 1.4
Умножим числитель на величину, обратную знаменателю.
Этап 1.5
Умножим на .
Этап 2
Вычислим предел.
Нажмите для увеличения количества этапов...
Этап 2.1
Вынесем член из-под знака предела, так как он не зависит от .
Этап 2.2
Разобьем предел с помощью правила частного пределов при стремлении к .
Этап 2.3
Найдем предел , который является константой по мере приближения к .
Этап 2.4
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 2.5
Перенесем предел внутрь тригонометрической функции, поскольку косинус является непрерывной функцией.
Этап 3
Найдем предел , подставив значение для .
Этап 4
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 4.1
Объединим.
Этап 4.2
Умножим на .
Этап 4.3
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 4.3.1
Точное значение : .
Этап 4.3.2
Применим правило умножения к .
Этап 4.3.3
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 4.3.3.1
С помощью запишем в виде .
Этап 4.3.3.2
Применим правило степени и перемножим показатели, .
Этап 4.3.3.3
Объединим и .
Этап 4.3.3.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.3.3.4.1
Сократим общий множитель.
Этап 4.3.3.4.2
Перепишем это выражение.
Этап 4.3.3.5
Найдем экспоненту.
Этап 4.3.4
Возведем в степень .
Этап 4.3.5
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 4.3.5.1
Вынесем множитель из .
Этап 4.3.5.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 4.3.5.2.1
Вынесем множитель из .
Этап 4.3.5.2.2
Сократим общий множитель.
Этап 4.3.5.2.3
Перепишем это выражение.
Этап 4.4
Объединим и .
Этап 4.5
Разделим на .
Этап 5
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: