Математический анализ Примеры

Этап 1
Чтобы найти функцию , найдем неопределенный интеграл производной .
Этап 2
Составим интеграл, чтобы решить его.
Этап 3
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 4
По правилу степени интеграл по имеет вид .
Этап 5
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 5.1
Перепишем в виде .
Этап 5.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Объединим и .
Этап 5.2.2
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 5.2.2.1
Вынесем множитель из .
Этап 5.2.2.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 5.2.2.2.1
Вынесем множитель из .
Этап 5.2.2.2.2
Сократим общий множитель.
Этап 5.2.2.2.3
Перепишем это выражение.
Этап 5.2.2.2.4
Разделим на .
Этап 6
Ответ ― первообразная функции .