Математический анализ Примеры

Этап 1
Запишем в виде функции.
Этап 2
Чтобы найти функцию , найдем неопределенный интеграл производной .
Этап 3
Составим интеграл, чтобы решить его.
Этап 4
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 5
По правилу степени интеграл по имеет вид .
Этап 6
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 6.1
Упростим.
Нажмите для увеличения количества этапов...
Этап 6.1.1
Объединим и .
Этап 6.1.2
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 6.2
Упростим.
Этап 6.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 6.3.1
Умножим на .
Этап 6.3.2
Объединим и .
Этап 6.3.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.3.3.1
Сократим общий множитель.
Этап 6.3.3.2
Перепишем это выражение.
Этап 7
Ответ ― первообразная функции .