Математический анализ Примеры

Найти локальный максимум и минимум cos(2x)
Этап 1
Запишем в виде функции.
Этап 2
Найдем первую производную функции.
Нажмите для увеличения количества этапов...
Этап 2.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.1.1
Чтобы применить цепное правило, зададим как .
Этап 2.1.2
Производная по равна .
Этап 2.1.3
Заменим все вхождения на .
Этап 2.2
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2.2
Умножим на .
Этап 2.2.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.4
Умножим на .
Этап 3
Найдем вторую производную функции.
Нажмите для увеличения количества этапов...
Этап 3.1
Поскольку является константой относительно , производная по равна .
Этап 3.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 3.2.1
Чтобы применить цепное правило, зададим как .
Этап 3.2.2
Производная по равна .
Этап 3.2.3
Заменим все вхождения на .
Этап 3.3
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Поскольку является константой относительно , производная по равна .
Этап 3.3.2
Умножим на .
Этап 3.3.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3.4
Умножим на .
Этап 4
Чтобы найти локальные максимумы и минимумы функции, приравняем производную к и решим полученное уравнение.
Этап 5
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 5.1
Разделим каждый член на .
Этап 5.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.2.1.1
Сократим общий множитель.
Этап 5.2.1.2
Разделим на .
Этап 5.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 5.3.1
Разделим на .
Этап 6
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Этап 7
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 7.1
Точное значение : .
Этап 8
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 8.1
Разделим каждый член на .
Этап 8.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 8.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 8.2.1.1
Сократим общий множитель.
Этап 8.2.1.2
Разделим на .
Этап 8.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 8.3.1
Разделим на .
Этап 9
Функция синуса положительна в первом и втором квадрантах. Для нахождения второго решения вычтем угол приведения из и найдем решение во втором квадранте.
Этап 10
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 10.1
Упростим.
Нажмите для увеличения количества этапов...
Этап 10.1.1
Умножим на .
Этап 10.1.2
Добавим и .
Этап 10.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 10.2.1
Разделим каждый член на .
Этап 10.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 10.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 10.2.2.1.1
Сократим общий множитель.
Этап 10.2.2.1.2
Разделим на .
Этап 11
Решение уравнения .
Этап 12
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 13
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 13.1
Умножим на .
Этап 13.2
Точное значение : .
Этап 13.3
Умножим на .
Этап 14
 — локальный максимум, так как вторая производная отрицательная. Это называется тестом второй производной.
 — локальный максимум
Этап 15
Найдем значение y, если .
Нажмите для увеличения количества этапов...
Этап 15.1
Заменим в этом выражении переменную на .
Этап 15.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 15.2.1
Умножим на .
Этап 15.2.2
Точное значение : .
Этап 15.2.3
Окончательный ответ: .
Этап 16
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 17
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 17.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 17.1.1
Сократим общий множитель.
Этап 17.1.2
Перепишем это выражение.
Этап 17.2
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте. Добавим минус к выражению, так как косинус отрицательный во втором квадранте.
Этап 17.3
Точное значение : .
Этап 17.4
Умножим .
Нажмите для увеличения количества этапов...
Этап 17.4.1
Умножим на .
Этап 17.4.2
Умножим на .
Этап 18
 — локальный минимум, так как вторая производная положительная. Это называется тестом второй производной.
 — локальный минимум
Этап 19
Найдем значение y, если .
Нажмите для увеличения количества этапов...
Этап 19.1
Заменим в этом выражении переменную на .
Этап 19.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 19.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 19.2.1.1
Сократим общий множитель.
Этап 19.2.1.2
Перепишем это выражение.
Этап 19.2.2
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте. Добавим минус к выражению, так как косинус отрицательный во втором квадранте.
Этап 19.2.3
Точное значение : .
Этап 19.2.4
Умножим на .
Этап 19.2.5
Окончательный ответ: .
Этап 20
Это локальные экстремумы .
 — локальный максимум
 — локальный минимум
Этап 21