Введите задачу...
Математический анализ Примеры
Этап 1
Запишем в виде функции.
Этап 2
Этап 2.1
Продифференцируем.
Этап 2.1.1
По правилу суммы производная по имеет вид .
Этап 2.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2
Найдем значение .
Этап 2.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.3
Умножим на .
Этап 2.3
Продифференцируем, используя правило константы.
Этап 2.3.1
Поскольку является константой относительно , производная относительно равна .
Этап 2.3.2
Добавим и .
Этап 3
Этап 3.1
По правилу суммы производная по имеет вид .
Этап 3.2
Найдем значение .
Этап 3.2.1
Поскольку является константой относительно , производная по равна .
Этап 3.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.2.3
Умножим на .
Этап 3.3
Найдем значение .
Этап 3.3.1
Поскольку является константой относительно , производная по равна .
Этап 3.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3.3
Умножим на .
Этап 4
Чтобы найти локальные максимумы и минимумы функции, приравняем производную к и решим полученное уравнение.
Этап 5
Этап 5.1
Найдем первую производную.
Этап 5.1.1
Продифференцируем.
Этап 5.1.1.1
По правилу суммы производная по имеет вид .
Этап 5.1.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 5.1.2
Найдем значение .
Этап 5.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 5.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 5.1.2.3
Умножим на .
Этап 5.1.3
Продифференцируем, используя правило константы.
Этап 5.1.3.1
Поскольку является константой относительно , производная относительно равна .
Этап 5.1.3.2
Добавим и .
Этап 5.2
Первая производная по равна .
Этап 6
Этап 6.1
Пусть первая производная равна .
Этап 6.2
Разложим левую часть уравнения на множители.
Этап 6.2.1
Вынесем множитель из .
Этап 6.2.1.1
Вынесем множитель из .
Этап 6.2.1.2
Вынесем множитель из .
Этап 6.2.1.3
Вынесем множитель из .
Этап 6.2.2
Перепишем в виде .
Этап 6.2.3
Разложим на множители.
Этап 6.2.3.1
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 6.2.3.2
Избавимся от ненужных скобок.
Этап 6.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 6.4
Приравняем к .
Этап 6.5
Приравняем к , затем решим относительно .
Этап 6.5.1
Приравняем к .
Этап 6.5.2
Вычтем из обеих частей уравнения.
Этап 6.6
Приравняем к , затем решим относительно .
Этап 6.6.1
Приравняем к .
Этап 6.6.2
Добавим к обеим частям уравнения.
Этап 6.7
Окончательным решением являются все значения, при которых верно.
Этап 7
Этап 7.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 8
Критические точки, которые необходимо вычислить.
Этап 9
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 10
Этап 10.1
Упростим каждый член.
Этап 10.1.1
Возведение в любую положительную степень дает .
Этап 10.1.2
Умножим на .
Этап 10.2
Вычтем из .
Этап 11
— локальный максимум, так как вторая производная отрицательная. Это называется тестом второй производной.
— локальный максимум
Этап 12
Этап 12.1
Заменим в этом выражении переменную на .
Этап 12.2
Упростим результат.
Этап 12.2.1
Упростим каждый член.
Этап 12.2.1.1
Возведение в любую положительную степень дает .
Этап 12.2.1.2
Возведение в любую положительную степень дает .
Этап 12.2.1.3
Умножим на .
Этап 12.2.2
Упростим путем добавления чисел.
Этап 12.2.2.1
Добавим и .
Этап 12.2.2.2
Добавим и .
Этап 12.2.3
Окончательный ответ: .
Этап 13
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 14
Этап 14.1
Упростим каждый член.
Этап 14.1.1
Возведем в степень .
Этап 14.1.2
Умножим на .
Этап 14.2
Вычтем из .
Этап 15
— локальный минимум, так как вторая производная положительная. Это называется тестом второй производной.
— локальный минимум
Этап 16
Этап 16.1
Заменим в этом выражении переменную на .
Этап 16.2
Упростим результат.
Этап 16.2.1
Упростим каждый член.
Этап 16.2.1.1
Возведем в степень .
Этап 16.2.1.2
Возведем в степень .
Этап 16.2.1.3
Умножим на .
Этап 16.2.2
Упростим путем сложения и вычитания.
Этап 16.2.2.1
Вычтем из .
Этап 16.2.2.2
Добавим и .
Этап 16.2.3
Окончательный ответ: .
Этап 17
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 18
Этап 18.1
Упростим каждый член.
Этап 18.1.1
Умножим на , сложив экспоненты.
Этап 18.1.1.1
Умножим на .
Этап 18.1.1.1.1
Возведем в степень .
Этап 18.1.1.1.2
Применим правило степени для объединения показателей.
Этап 18.1.1.2
Добавим и .
Этап 18.1.2
Возведем в степень .
Этап 18.2
Вычтем из .
Этап 19
— локальный минимум, так как вторая производная положительная. Это называется тестом второй производной.
— локальный минимум
Этап 20
Этап 20.1
Заменим в этом выражении переменную на .
Этап 20.2
Упростим результат.
Этап 20.2.1
Упростим каждый член.
Этап 20.2.1.1
Возведем в степень .
Этап 20.2.1.2
Возведем в степень .
Этап 20.2.1.3
Умножим на .
Этап 20.2.2
Упростим путем сложения и вычитания.
Этап 20.2.2.1
Вычтем из .
Этап 20.2.2.2
Добавим и .
Этап 20.2.3
Окончательный ответ: .
Этап 21
Это локальные экстремумы .
— локальный максимум
— локальный минимум
— локальный минимум
Этап 22