Введите задачу...
Математический анализ Примеры
Этап 1
Запишем в виде функции.
Этап 2
Этап 2.1
По правилу суммы производная по имеет вид .
Этап 2.2
Найдем значение .
Этап 2.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.3
Умножим на .
Этап 2.3
Найдем значение .
Этап 2.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.3
Умножим на .
Этап 2.4
Продифференцируем, используя правило константы.
Этап 2.4.1
Поскольку является константой относительно , производная относительно равна .
Этап 2.4.2
Добавим и .
Этап 3
Этап 3.1
По правилу суммы производная по имеет вид .
Этап 3.2
Найдем значение .
Этап 3.2.1
Поскольку является константой относительно , производная по равна .
Этап 3.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.2.3
Умножим на .
Этап 3.3
Продифференцируем, используя правило константы.
Этап 3.3.1
Поскольку является константой относительно , производная относительно равна .
Этап 3.3.2
Добавим и .
Этап 4
Чтобы найти локальные максимумы и минимумы функции, приравняем производную к и решим полученное уравнение.
Этап 5
Этап 5.1
Найдем первую производную.
Этап 5.1.1
По правилу суммы производная по имеет вид .
Этап 5.1.2
Найдем значение .
Этап 5.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 5.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 5.1.2.3
Умножим на .
Этап 5.1.3
Найдем значение .
Этап 5.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 5.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 5.1.3.3
Умножим на .
Этап 5.1.4
Продифференцируем, используя правило константы.
Этап 5.1.4.1
Поскольку является константой относительно , производная относительно равна .
Этап 5.1.4.2
Добавим и .
Этап 5.2
Первая производная по равна .
Этап 6
Этап 6.1
Пусть первая производная равна .
Этап 6.2
Добавим к обеим частям уравнения.
Этап 6.3
Разделим каждый член на и упростим.
Этап 6.3.1
Разделим каждый член на .
Этап 6.3.2
Упростим левую часть.
Этап 6.3.2.1
Сократим общий множитель .
Этап 6.3.2.1.1
Сократим общий множитель.
Этап 6.3.2.1.2
Разделим на .
Этап 6.3.3
Упростим правую часть.
Этап 6.3.3.1
Разделим на .
Этап 6.4
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 6.5
Упростим .
Этап 6.5.1
Перепишем в виде .
Этап 6.5.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 6.6
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 6.6.1
Сначала с помощью положительного значения найдем первое решение.
Этап 6.6.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 6.6.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 7
Этап 7.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 8
Критические точки, которые необходимо вычислить.
Этап 9
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 10
Умножим на .
Этап 11
— локальный минимум, так как вторая производная положительная. Это называется тестом второй производной.
— локальный минимум
Этап 12
Этап 12.1
Заменим в этом выражении переменную на .
Этап 12.2
Упростим результат.
Этап 12.2.1
Упростим каждый член.
Этап 12.2.1.1
Умножим на , сложив экспоненты.
Этап 12.2.1.1.1
Умножим на .
Этап 12.2.1.1.1.1
Возведем в степень .
Этап 12.2.1.1.1.2
Применим правило степени для объединения показателей.
Этап 12.2.1.1.2
Добавим и .
Этап 12.2.1.2
Возведем в степень .
Этап 12.2.1.3
Умножим на .
Этап 12.2.2
Упростим путем вычитания чисел.
Этап 12.2.2.1
Вычтем из .
Этап 12.2.2.2
Вычтем из .
Этап 12.2.3
Окончательный ответ: .
Этап 13
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 14
Умножим на .
Этап 15
— локальный максимум, так как вторая производная отрицательная. Это называется тестом второй производной.
— локальный максимум
Этап 16
Этап 16.1
Заменим в этом выражении переменную на .
Этап 16.2
Упростим результат.
Этап 16.2.1
Упростим каждый член.
Этап 16.2.1.1
Возведем в степень .
Этап 16.2.1.2
Умножим на .
Этап 16.2.1.3
Умножим на .
Этап 16.2.2
Упростим путем сложения и вычитания.
Этап 16.2.2.1
Добавим и .
Этап 16.2.2.2
Вычтем из .
Этап 16.2.3
Окончательный ответ: .
Этап 17
Это локальные экстремумы .
— локальный минимум
— локальный максимум
Этап 18