Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
По правилу суммы производная по имеет вид .
Этап 1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3
Поскольку является константой относительно , производная относительно равна .
Этап 1.4
Добавим и .
Этап 2
Этап 2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3
Умножим на .
Этап 3
Чтобы найти локальные максимумы и минимумы функции, приравняем производную к и решим полученное уравнение.
Этап 4
Этап 4.1
Найдем первую производную.
Этап 4.1.1
По правилу суммы производная по имеет вид .
Этап 4.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.1.3
Поскольку является константой относительно , производная относительно равна .
Этап 4.1.4
Добавим и .
Этап 4.2
Первая производная по равна .
Этап 5
Этап 5.1
Пусть первая производная равна .
Этап 5.2
Разделим каждый член на и упростим.
Этап 5.2.1
Разделим каждый член на .
Этап 5.2.2
Упростим левую часть.
Этап 5.2.2.1
Сократим общий множитель .
Этап 5.2.2.1.1
Сократим общий множитель.
Этап 5.2.2.1.2
Разделим на .
Этап 5.2.3
Упростим правую часть.
Этап 5.2.3.1
Разделим на .
Этап 6
Этап 6.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 7
Критические точки, которые необходимо вычислить.
Этап 8
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 9
— локальный минимум, так как вторая производная положительная. Это называется тестом второй производной.
— локальный минимум
Этап 10
Этап 10.1
Заменим в этом выражении переменную на .
Этап 10.2
Упростим результат.
Этап 10.2.1
Возведение в любую положительную степень дает .
Этап 10.2.2
Вычтем из .
Этап 10.2.3
Окончательный ответ: .
Этап 11
Это локальные экстремумы .
— локальный минимум
Этап 12