Математический анализ Примеры

Вычислить при помощи правила Лопиталя предел ( натуральный логарифм x)/(x-1), когда x стремится к 1
Этап 1
Найдем предел числителя и предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 1.1
Возьмем предел числителя и предел знаменателя.
Этап 1.2
Найдем предел числителя.
Нажмите для увеличения количества этапов...
Этап 1.2.1
Внесем предел под знак логарифма.
Этап 1.2.2
Найдем предел , подставив значение для .
Этап 1.2.3
Натуральный логарифм равен .
Этап 1.3
Найдем предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Вычислим предел.
Нажмите для увеличения количества этапов...
Этап 1.3.1.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.3.1.2
Найдем предел , который является константой по мере приближения к .
Этап 1.3.2
Найдем предел , подставив значение для .
Этап 1.3.3
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 1.3.3.1
Умножим на .
Этап 1.3.3.2
Вычтем из .
Этап 1.3.3.3
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.3.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 3
Найдем производную числителя и знаменателя.
Нажмите для увеличения количества этапов...
Этап 3.1
Продифференцируем числитель и знаменатель.
Этап 3.2
Производная по равна .
Этап 3.3
По правилу суммы производная по имеет вид .
Этап 3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.5
Поскольку является константой относительно , производная относительно равна .
Этап 3.6
Добавим и .
Этап 4
Умножим числитель на величину, обратную знаменателю.
Этап 5
Вычислим предел.
Нажмите для увеличения количества этапов...
Этап 5.1
Умножим на .
Этап 5.2
Разобьем предел с помощью правила частного пределов при стремлении к .
Этап 5.3
Найдем предел , который является константой по мере приближения к .
Этап 6
Найдем предел , подставив значение для .
Этап 7
Разделим на .