Математический анализ Примеры

Вычислим интеграл интеграл в пределах от 0 до 4 от x^2 квадратный корень из 16-x^2 по x
Этап 1
Пусть , где . Тогда . Заметим, что поскольку , выражение положительно.
Этап 2
Упростим члены.
Нажмите для увеличения количества этапов...
Этап 2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.1.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.1.1.1
Применим правило умножения к .
Этап 2.1.1.2
Возведем в степень .
Этап 2.1.1.3
Умножим на .
Этап 2.1.2
Вынесем множитель из .
Этап 2.1.3
Вынесем множитель из .
Этап 2.1.4
Вынесем множитель из .
Этап 2.1.5
Применим формулу Пифагора.
Этап 2.1.6
Перепишем в виде .
Этап 2.1.7
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 2.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Вынесем множитель из .
Этап 2.2.2
Применим правило умножения к .
Этап 2.2.3
Возведем в степень .
Этап 2.2.4
Умножим на .
Этап 2.2.5
Умножим на .
Этап 2.2.6
Возведем в степень .
Этап 2.2.7
Возведем в степень .
Этап 2.2.8
Применим правило степени для объединения показателей.
Этап 2.2.9
Добавим и .
Этап 3
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 4
Используем формулу половинного угла для записи в виде .
Этап 5
Используем формулу половинного угла для записи в виде .
Этап 6
Упростим.
Нажмите для увеличения количества этапов...
Этап 6.1
Умножим на .
Этап 6.2
Умножим на .
Этап 7
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 8
Упростим.
Нажмите для увеличения количества этапов...
Этап 8.1
Объединим и .
Этап 8.2
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 8.2.1
Вынесем множитель из .
Этап 8.2.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 8.2.2.1
Вынесем множитель из .
Этап 8.2.2.2
Сократим общий множитель.
Этап 8.2.2.3
Перепишем это выражение.
Этап 8.2.2.4
Разделим на .
Этап 9
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 9.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 9.1.1
Дифференцируем .
Этап 9.1.2
Поскольку является константой относительно , производная по равна .
Этап 9.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 9.1.4
Умножим на .
Этап 9.2
Подставим нижнее предельное значение вместо в .
Этап 9.3
Умножим на .
Этап 9.4
Подставим верхнее предельное значение вместо в .
Этап 9.5
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 9.5.1
Сократим общий множитель.
Этап 9.5.2
Перепишем это выражение.
Этап 9.6
Значения, найденные для и , будут использованы для вычисления данного определенного интеграла.
Этап 9.7
Переформулируем задачу, используя , и новые пределы интегрирования.
Этап 10
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 11
Упростим путем перемножения.
Нажмите для увеличения количества этапов...
Этап 11.1
Упростим.
Нажмите для увеличения количества этапов...
Этап 11.1.1
Объединим и .
Этап 11.1.2
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 11.1.2.1
Вынесем множитель из .
Этап 11.1.2.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 11.1.2.2.1
Вынесем множитель из .
Этап 11.1.2.2.2
Сократим общий множитель.
Этап 11.1.2.2.3
Перепишем это выражение.
Этап 11.1.2.2.4
Разделим на .
Этап 11.2
Развернем .
Нажмите для увеличения количества этапов...
Этап 11.2.1
Применим свойство дистрибутивности.
Этап 11.2.2
Применим свойство дистрибутивности.
Этап 11.2.3
Применим свойство дистрибутивности.
Этап 11.2.4
Перенесем .
Этап 11.2.5
Умножим на .
Этап 11.2.6
Умножим на .
Этап 11.2.7
Умножим на .
Этап 11.2.8
Вынесем за скобки отрицательное значение.
Этап 11.2.9
Возведем в степень .
Этап 11.2.10
Возведем в степень .
Этап 11.2.11
Применим правило степени для объединения показателей.
Этап 11.2.12
Добавим и .
Этап 11.2.13
Вычтем из .
Этап 11.2.14
Вычтем из .
Этап 12
Разделим данный интеграл на несколько интегралов.
Этап 13
Применим правило дифференцирования постоянных функций.
Этап 14
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 15
Используем формулу половинного угла для записи в виде .
Этап 16
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 17
Разделим данный интеграл на несколько интегралов.
Этап 18
Применим правило дифференцирования постоянных функций.
Этап 19
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 19.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 19.1.1
Дифференцируем .
Этап 19.1.2
Поскольку является константой относительно , производная по равна .
Этап 19.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 19.1.4
Умножим на .
Этап 19.2
Подставим нижнее предельное значение вместо в .
Этап 19.3
Умножим на .
Этап 19.4
Подставим верхнее предельное значение вместо в .
Этап 19.5
Значения, найденные для и , будут использованы для вычисления данного определенного интеграла.
Этап 19.6
Переформулируем задачу, используя , и новые пределы интегрирования.
Этап 20
Объединим и .
Этап 21
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 22
Интеграл по имеет вид .
Этап 23
Объединим и .
Этап 24
Подставим и упростим.
Нажмите для увеличения количества этапов...
Этап 24.1
Найдем значение в и в .
Этап 24.2
Найдем значение в и в .
Этап 24.3
Найдем значение в и в .
Этап 24.4
Упростим.
Нажмите для увеличения количества этапов...
Этап 24.4.1
Добавим и .
Этап 24.4.2
Добавим и .
Этап 25
Упростим.
Нажмите для увеличения количества этапов...
Этап 25.1
Точное значение : .
Этап 25.2
Умножим на .
Этап 25.3
Добавим и .
Этап 26
Упростим.
Нажмите для увеличения количества этапов...
Этап 26.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 26.1.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 26.1.1.1
Удалим число полных оборотов , чтобы угол оказался больше или равен и меньше .
Этап 26.1.1.2
Точное значение : .
Этап 26.1.2
Разделим на .
Этап 26.2
Добавим и .
Этап 26.3
Объединим и .
Этап 26.4
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 26.5
Объединим и .
Этап 26.6
Объединим числители над общим знаменателем.
Этап 26.7
Перенесем влево от .
Этап 26.8
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 26.8.1
Вынесем множитель из .
Этап 26.8.2
Сократим общий множитель.
Этап 26.8.3
Перепишем это выражение.
Этап 26.9
Вычтем из .
Этап 27
Результат можно представить в различном виде.
Точная форма:
Десятичная форма:
Этап 28