Введите задачу...
Математический анализ Примеры
Этап 1
Разделим данный интеграл на несколько интегралов.
Этап 2
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 3
Интеграл по имеет вид .
Этап 4
Применим правило дифференцирования постоянных функций.
Этап 5
Этап 5.1
Найдем значение в и в .
Этап 5.2
Найдем значение в и в .
Этап 5.3
Упростим.
Этап 5.3.1
Упростим.
Этап 5.3.2
Умножим на .
Этап 5.3.3
Умножим на .
Этап 5.3.4
Добавим и .
Этап 6
Этап 6.1
Применим свойство дистрибутивности.
Этап 6.2
Умножим на .
Этап 7
Результат можно представить в различном виде.
Точная форма:
Десятичная форма:
Этап 8