Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Найдем вторую производную.
Этап 1.1.1
Найдем первую производную.
Этап 1.1.1.1
С помощью запишем в виде .
Этап 1.1.1.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 1.1.1.2.1
Чтобы применить цепное правило, зададим как .
Этап 1.1.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.1.2.3
Заменим все вхождения на .
Этап 1.1.1.3
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.1.1.4
Объединим и .
Этап 1.1.1.5
Объединим числители над общим знаменателем.
Этап 1.1.1.6
Упростим числитель.
Этап 1.1.1.6.1
Умножим на .
Этап 1.1.1.6.2
Вычтем из .
Этап 1.1.1.7
Объединим дроби.
Этап 1.1.1.7.1
Вынесем знак минуса перед дробью.
Этап 1.1.1.7.2
Объединим и .
Этап 1.1.1.7.3
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 1.1.1.8
По правилу суммы производная по имеет вид .
Этап 1.1.1.9
Поскольку является константой относительно , производная относительно равна .
Этап 1.1.1.10
Добавим и .
Этап 1.1.1.11
Поскольку является константой относительно , производная по равна .
Этап 1.1.1.12
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.1.13
Объединим дроби.
Этап 1.1.1.13.1
Умножим на .
Этап 1.1.1.13.2
Объединим и .
Этап 1.1.1.13.3
Вынесем знак минуса перед дробью.
Этап 1.1.2
Найдем вторую производную.
Этап 1.1.2.1
Продифференцируем, используя правило умножения на константу.
Этап 1.1.2.1.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.2.1.2
Применим основные правила для показателей степени.
Этап 1.1.2.1.2.1
Перепишем в виде .
Этап 1.1.2.1.2.2
Перемножим экспоненты в .
Этап 1.1.2.1.2.2.1
Применим правило степени и перемножим показатели, .
Этап 1.1.2.1.2.2.2
Объединим и .
Этап 1.1.2.1.2.2.3
Вынесем знак минуса перед дробью.
Этап 1.1.2.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 1.1.2.2.1
Чтобы применить цепное правило, зададим как .
Этап 1.1.2.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2.2.3
Заменим все вхождения на .
Этап 1.1.2.3
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.1.2.4
Объединим и .
Этап 1.1.2.5
Объединим числители над общим знаменателем.
Этап 1.1.2.6
Упростим числитель.
Этап 1.1.2.6.1
Умножим на .
Этап 1.1.2.6.2
Вычтем из .
Этап 1.1.2.7
Объединим дроби.
Этап 1.1.2.7.1
Вынесем знак минуса перед дробью.
Этап 1.1.2.7.2
Объединим и .
Этап 1.1.2.7.3
Упростим выражение.
Этап 1.1.2.7.3.1
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 1.1.2.7.3.2
Умножим на .
Этап 1.1.2.7.3.3
Умножим на .
Этап 1.1.2.7.4
Умножим на .
Этап 1.1.2.7.5
Умножим на .
Этап 1.1.2.8
По правилу суммы производная по имеет вид .
Этап 1.1.2.9
Поскольку является константой относительно , производная относительно равна .
Этап 1.1.2.10
Добавим и .
Этап 1.1.2.11
Поскольку является константой относительно , производная по равна .
Этап 1.1.2.12
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2.13
Объединим дроби.
Этап 1.1.2.13.1
Умножим на .
Этап 1.1.2.13.2
Объединим и .
Этап 1.1.2.13.3
Вынесем знак минуса перед дробью.
Этап 1.1.3
Вторая производная по равна .
Этап 1.2
Приравняем вторую производную к , затем найдем решение уравнения .
Этап 1.2.1
Пусть вторая производная равна .
Этап 1.2.2
Приравняем числитель к нулю.
Этап 1.2.3
Поскольку , решения отсутствуют.
Нет решения
Нет решения
Нет решения
Этап 2
Этап 2.1
Зададим подкоренное выражение в большим или равным , чтобы узнать, где определено данное выражение.
Этап 2.2
Решим относительно .
Этап 2.2.1
Вычтем из обеих частей неравенства.
Этап 2.2.2
Разделим каждый член на и упростим.
Этап 2.2.2.1
Разделим каждый член на . При умножении или делении обеих частей неравенства на отрицательное значение заменим знак неравенства на противоположный.
Этап 2.2.2.2
Упростим левую часть.
Этап 2.2.2.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 2.2.2.2.2
Разделим на .
Этап 2.2.2.3
Упростим правую часть.
Этап 2.2.2.3.1
Разделим на .
Этап 2.3
Область определения ― это все значения , при которых выражение определено.
Интервальное представление:
Обозначение построения множества:
Интервальное представление:
Обозначение построения множества:
Этап 3
Создадим интервалы вокруг значений , в которых вторая производная равна нулю или не определена.
Этап 4
Этап 4.1
Заменим в этом выражении переменную на .
Этап 4.2
Упростим результат.
Этап 4.2.1
Упростим знаменатель.
Этап 4.2.1.1
Вычтем из .
Этап 4.2.1.2
Перепишем в виде .
Этап 4.2.1.3
Применим правило степени и перемножим показатели, .
Этап 4.2.1.4
Сократим общий множитель .
Этап 4.2.1.4.1
Сократим общий множитель.
Этап 4.2.1.4.2
Перепишем это выражение.
Этап 4.2.1.5
Возведем в степень .
Этап 4.2.2
Умножим на .
Этап 4.2.3
Окончательный ответ: .
Этап 4.3
График вогнут вниз на интервале , поскольку имеет отрицательное значение.
Вогнутость вниз на интервале , поскольку меньше нуля
Вогнутость вниз на интервале , поскольку меньше нуля
Этап 5