Введите задачу...
Математический анализ Примеры
Этап 1
Примем как функцию .
Этап 2
Этап 2.1
Продифференцируем.
Этап 2.1.1
По правилу суммы производная по имеет вид .
Этап 2.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2
Производная по равна .
Этап 3
Этап 3.1
Вычтем из обеих частей уравнения.
Этап 3.2
Возьмем обратный косинус обеих частей уравнения, чтобы извлечь из косинуса.
Этап 3.3
Упростим правую часть.
Этап 3.3.1
Точное значение : .
Этап 3.4
Функция косинуса отрицательна во втором и третьем квадрантах. Чтобы найти второе решение, вычтем угол приведения из и найдем решение в третьем квадранте.
Этап 3.5
Вычтем из .
Этап 3.6
Найдем период .
Этап 3.6.1
Период функции можно вычислить по формуле .
Этап 3.6.2
Заменим на в формуле периода.
Этап 3.6.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 3.6.4
Разделим на .
Этап 3.7
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
Этап 4
Этап 4.1
Заменим в этом выражении переменную на .
Этап 4.2
Упростим результат.
Этап 4.2.1
Упростим каждый член.
Этап 4.2.1.1
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте.
Этап 4.2.1.2
Точное значение : .
Этап 4.2.2
Добавим и .
Этап 4.2.3
Окончательный ответ: .
Этап 5
Этап 5.1
Заменим в этом выражении переменную на .
Этап 5.2
Упростим результат.
Этап 5.2.1
Упростим каждый член.
Этап 5.2.1.1
Добавим и .
Этап 5.2.1.2
Удалим число полных оборотов , чтобы угол оказался больше или равен и меньше .
Этап 5.2.1.3
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте.
Этап 5.2.1.4
Точное значение : .
Этап 5.2.2
Упростим путем добавления членов.
Этап 5.2.2.1
Добавим и .
Этап 5.2.2.2
Добавим и .
Этап 5.2.3
Окончательный ответ: .
Этап 6
Горизонтальная касательной к графику функции : .
Этап 7