Математический анализ Примеры

Найти горизонтальную касательную f(x)=x^3-4x^2
Этап 1
Найдем производную.
Нажмите для увеличения количества этапов...
Этап 1.1
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 1.1.1
По правилу суммы производная по имеет вид .
Этап 1.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2.3
Умножим на .
Этап 2
Приравняем производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 2.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 2.1.1
Вынесем множитель из .
Этап 2.1.2
Вынесем множитель из .
Этап 2.1.3
Вынесем множитель из .
Этап 2.2
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 2.3
Приравняем к .
Этап 2.4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.4.1
Приравняем к .
Этап 2.4.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.4.2.1
Добавим к обеим частям уравнения.
Этап 2.4.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 2.4.2.2.1
Разделим каждый член на .
Этап 2.4.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.4.2.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.4.2.2.2.1.1
Сократим общий множитель.
Этап 2.4.2.2.2.1.2
Разделим на .
Этап 2.5
Окончательным решением являются все значения, при которых верно.
Этап 3
Решим исходную функцию в точке .
Нажмите для увеличения количества этапов...
Этап 3.1
Заменим в этом выражении переменную на .
Этап 3.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.2.1.1
Возведение в любую положительную степень дает .
Этап 3.2.1.2
Возведение в любую положительную степень дает .
Этап 3.2.1.3
Умножим на .
Этап 3.2.2
Добавим и .
Этап 3.2.3
Окончательный ответ: .
Этап 4
Решим исходную функцию в точке .
Нажмите для увеличения количества этапов...
Этап 4.1
Заменим в этом выражении переменную на .
Этап 4.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 4.2.1.1
Применим правило умножения к .
Этап 4.2.1.2
Возведем в степень .
Этап 4.2.1.3
Возведем в степень .
Этап 4.2.1.4
Применим правило умножения к .
Этап 4.2.1.5
Возведем в степень .
Этап 4.2.1.6
Возведем в степень .
Этап 4.2.1.7
Умножим .
Нажмите для увеличения количества этапов...
Этап 4.2.1.7.1
Объединим и .
Этап 4.2.1.7.2
Умножим на .
Этап 4.2.1.8
Вынесем знак минуса перед дробью.
Этап 4.2.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 4.2.3
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Нажмите для увеличения количества этапов...
Этап 4.2.3.1
Умножим на .
Этап 4.2.3.2
Умножим на .
Этап 4.2.4
Объединим числители над общим знаменателем.
Этап 4.2.5
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 4.2.5.1
Умножим на .
Этап 4.2.5.2
Вычтем из .
Этап 4.2.6
Вынесем знак минуса перед дробью.
Этап 4.2.7
Окончательный ответ: .
Этап 5
Горизонтальные касательные функции  ― .
Этап 6