Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Найдем первую производную.
Этап 1.1.1
По правилу суммы производная по имеет вид .
Этап 1.1.2
Найдем значение .
Этап 1.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2.3
Умножим на .
Этап 1.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.4
Найдем значение .
Этап 1.1.4.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.4.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.4.3
Умножим на .
Этап 1.2
Первая производная по равна .
Этап 2
Этап 2.1
Пусть первая производная равна .
Этап 2.2
Вынесем множитель из .
Этап 2.2.1
Вынесем множитель из .
Этап 2.2.2
Вынесем множитель из .
Этап 2.2.3
Вынесем множитель из .
Этап 2.2.4
Вынесем множитель из .
Этап 2.2.5
Вынесем множитель из .
Этап 2.3
Разделим каждый член на и упростим.
Этап 2.3.1
Разделим каждый член на .
Этап 2.3.2
Упростим левую часть.
Этап 2.3.2.1
Сократим общий множитель .
Этап 2.3.2.1.1
Сократим общий множитель.
Этап 2.3.2.1.2
Разделим на .
Этап 2.3.3
Упростим правую часть.
Этап 2.3.3.1
Разделим на .
Этап 2.4
Используем формулу для нахождения корней квадратного уравнения.
Этап 2.5
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 2.6
Упростим.
Этап 2.6.1
Упростим числитель.
Этап 2.6.1.1
Единица в любой степени равна единице.
Этап 2.6.1.2
Умножим .
Этап 2.6.1.2.1
Умножим на .
Этап 2.6.1.2.2
Умножим на .
Этап 2.6.1.3
Вычтем из .
Этап 2.6.1.4
Перепишем в виде .
Этап 2.6.1.5
Перепишем в виде .
Этап 2.6.1.6
Перепишем в виде .
Этап 2.6.2
Умножим на .
Этап 2.7
Упростим выражение, которое нужно решить для части значения .
Этап 2.7.1
Упростим числитель.
Этап 2.7.1.1
Единица в любой степени равна единице.
Этап 2.7.1.2
Умножим .
Этап 2.7.1.2.1
Умножим на .
Этап 2.7.1.2.2
Умножим на .
Этап 2.7.1.3
Вычтем из .
Этап 2.7.1.4
Перепишем в виде .
Этап 2.7.1.5
Перепишем в виде .
Этап 2.7.1.6
Перепишем в виде .
Этап 2.7.2
Умножим на .
Этап 2.7.3
Заменим на .
Этап 2.7.4
Перепишем в виде .
Этап 2.7.5
Вынесем множитель из .
Этап 2.7.6
Вынесем множитель из .
Этап 2.7.7
Вынесем знак минуса перед дробью.
Этап 2.8
Упростим выражение, которое нужно решить для части значения .
Этап 2.8.1
Упростим числитель.
Этап 2.8.1.1
Единица в любой степени равна единице.
Этап 2.8.1.2
Умножим .
Этап 2.8.1.2.1
Умножим на .
Этап 2.8.1.2.2
Умножим на .
Этап 2.8.1.3
Вычтем из .
Этап 2.8.1.4
Перепишем в виде .
Этап 2.8.1.5
Перепишем в виде .
Этап 2.8.1.6
Перепишем в виде .
Этап 2.8.2
Умножим на .
Этап 2.8.3
Заменим на .
Этап 2.8.4
Перепишем в виде .
Этап 2.8.5
Вынесем множитель из .
Этап 2.8.6
Вынесем множитель из .
Этап 2.8.7
Вынесем знак минуса перед дробью.
Этап 2.9
Окончательный ответ является комбинацией обоих решений.
Этап 3
Этап 3.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 4
В области определения исходной задачи нет значений , при которых производная равна или не определена.
Критические точки не найдены