Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Продифференцируем.
Этап 1.1.1
По правилу суммы производная по имеет вид .
Этап 1.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2
Найдем значение .
Этап 1.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.2.2
Производная по равна .
Этап 1.2.3
Объединим и .
Этап 1.2.4
Вынесем знак минуса перед дробью.
Этап 2
Этап 2.1
По правилу суммы производная по имеет вид .
Этап 2.2
Найдем значение .
Этап 2.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.3
Умножим на .
Этап 2.3
Найдем значение .
Этап 2.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.3.2
Перепишем в виде .
Этап 2.3.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.4
Умножим на .
Этап 2.4
Упростим.
Этап 2.4.1
Перепишем выражение, используя правило отрицательных степеней .
Этап 2.4.2
Объединим и .
Этап 2.4.3
Изменим порядок членов.
Этап 3
Чтобы найти локальные максимумы и минимумы функции, приравняем производную к и решим полученное уравнение.
Этап 4
Этап 4.1
Найдем первую производную.
Этап 4.1.1
Продифференцируем.
Этап 4.1.1.1
По правилу суммы производная по имеет вид .
Этап 4.1.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.1.2
Найдем значение .
Этап 4.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 4.1.2.2
Производная по равна .
Этап 4.1.2.3
Объединим и .
Этап 4.1.2.4
Вынесем знак минуса перед дробью.
Этап 4.2
Первая производная по равна .
Этап 5
Этап 5.1
Пусть первая производная равна .
Этап 5.2
Найдем НОК знаменателей членов уравнения.
Этап 5.2.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 5.2.2
НОК единицы и любого выражения есть это выражение.
Этап 5.3
Каждый член в умножим на , чтобы убрать дроби.
Этап 5.3.1
Умножим каждый член на .
Этап 5.3.2
Упростим левую часть.
Этап 5.3.2.1
Упростим каждый член.
Этап 5.3.2.1.1
Умножим на , сложив экспоненты.
Этап 5.3.2.1.1.1
Перенесем .
Этап 5.3.2.1.1.2
Умножим на .
Этап 5.3.2.1.2
Сократим общий множитель .
Этап 5.3.2.1.2.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 5.3.2.1.2.2
Сократим общий множитель.
Этап 5.3.2.1.2.3
Перепишем это выражение.
Этап 5.3.3
Упростим правую часть.
Этап 5.3.3.1
Умножим на .
Этап 5.4
Решим уравнение.
Этап 5.4.1
Добавим к обеим частям уравнения.
Этап 5.4.2
Разделим каждый член на и упростим.
Этап 5.4.2.1
Разделим каждый член на .
Этап 5.4.2.2
Упростим левую часть.
Этап 5.4.2.2.1
Сократим общий множитель .
Этап 5.4.2.2.1.1
Сократим общий множитель.
Этап 5.4.2.2.1.2
Разделим на .
Этап 5.4.2.3
Упростим правую часть.
Этап 5.4.2.3.1
Разделим на .
Этап 5.4.3
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 5.4.4
Упростим .
Этап 5.4.4.1
Перепишем в виде .
Этап 5.4.4.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 5.4.5
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 5.4.5.1
Сначала с помощью положительного значения найдем первое решение.
Этап 5.4.5.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 5.4.5.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 6
Этап 6.1
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 7
Критические точки, которые необходимо вычислить.
Этап 8
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 9
Этап 9.1
Упростим каждый член.
Этап 9.1.1
Возведем в степень .
Этап 9.1.2
Разделим на .
Этап 9.2
Добавим и .
Этап 10
— локальный минимум, так как вторая производная положительная. Это называется тестом второй производной.
— локальный минимум
Этап 11
Этап 11.1
Заменим в этом выражении переменную на .
Этап 11.2
Упростим результат.
Этап 11.2.1
Упростим каждый член.
Этап 11.2.1.1
Возведем в степень .
Этап 11.2.1.2
Упростим путем переноса под логарифм.
Этап 11.2.1.3
Возведем в степень .
Этап 11.2.2
Окончательный ответ: .
Этап 12
Это локальные экстремумы .
— локальный минимум
Этап 13