Математический анализ Примеры

Найти локальный максимум и минимум f(x)=x^2-8 натуральный логарифм от x
Этап 1
Найдем первую производную функции.
Нажмите для увеличения количества этапов...
Этап 1.1
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 1.1.1
По правилу суммы производная по имеет вид .
Этап 1.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.2.2
Производная по равна .
Этап 1.2.3
Объединим и .
Этап 1.2.4
Вынесем знак минуса перед дробью.
Этап 2
Найдем вторую производную функции.
Нажмите для увеличения количества этапов...
Этап 2.1
По правилу суммы производная по имеет вид .
Этап 2.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.3
Умножим на .
Этап 2.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.3.2
Перепишем в виде .
Этап 2.3.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.4
Умножим на .
Этап 2.4
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.4.1
Перепишем выражение, используя правило отрицательных степеней .
Этап 2.4.2
Объединим и .
Этап 2.4.3
Изменим порядок членов.
Этап 3
Чтобы найти локальные максимумы и минимумы функции, приравняем производную к и решим полученное уравнение.
Этап 4
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 4.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 4.1.1
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 4.1.1.1
По правилу суммы производная по имеет вид .
Этап 4.1.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.1.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 4.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 4.1.2.2
Производная по равна .
Этап 4.1.2.3
Объединим и .
Этап 4.1.2.4
Вынесем знак минуса перед дробью.
Этап 4.2
Первая производная по равна .
Этап 5
Приравняем первую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 5.1
Пусть первая производная равна .
Этап 5.2
Найдем НОК знаменателей членов уравнения.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 5.2.2
НОК единицы и любого выражения есть это выражение.
Этап 5.3
Каждый член в умножим на , чтобы убрать дроби.
Нажмите для увеличения количества этапов...
Этап 5.3.1
Умножим каждый член на .
Этап 5.3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 5.3.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 5.3.2.1.1
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 5.3.2.1.1.1
Перенесем .
Этап 5.3.2.1.1.2
Умножим на .
Этап 5.3.2.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.3.2.1.2.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 5.3.2.1.2.2
Сократим общий множитель.
Этап 5.3.2.1.2.3
Перепишем это выражение.
Этап 5.3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 5.3.3.1
Умножим на .
Этап 5.4
Решим уравнение.
Нажмите для увеличения количества этапов...
Этап 5.4.1
Добавим к обеим частям уравнения.
Этап 5.4.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 5.4.2.1
Разделим каждый член на .
Этап 5.4.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 5.4.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.4.2.2.1.1
Сократим общий множитель.
Этап 5.4.2.2.1.2
Разделим на .
Этап 5.4.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 5.4.2.3.1
Разделим на .
Этап 5.4.3
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 5.4.4
Упростим .
Нажмите для увеличения количества этапов...
Этап 5.4.4.1
Перепишем в виде .
Этап 5.4.4.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 5.4.5
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 5.4.5.1
Сначала с помощью положительного значения найдем первое решение.
Этап 5.4.5.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 5.4.5.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 6
Найдем значения, при которых производная не определена.
Нажмите для увеличения количества этапов...
Этап 6.1
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 7
Критические точки, которые необходимо вычислить.
Этап 8
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 9
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 9.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 9.1.1
Возведем в степень .
Этап 9.1.2
Разделим на .
Этап 9.2
Добавим и .
Этап 10
 — локальный минимум, так как вторая производная положительная. Это называется тестом второй производной.
 — локальный минимум
Этап 11
Найдем значение y, если .
Нажмите для увеличения количества этапов...
Этап 11.1
Заменим в этом выражении переменную на .
Этап 11.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 11.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 11.2.1.1
Возведем в степень .
Этап 11.2.1.2
Упростим путем переноса под логарифм.
Этап 11.2.1.3
Возведем в степень .
Этап 11.2.2
Окончательный ответ: .
Этап 12
Это локальные экстремумы .
 — локальный минимум
Этап 13