Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
По правилу суммы производная по имеет вид .
Этап 1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2
Этап 2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2.3
Производная по равна .
Этап 2.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.5
Объединим и .
Этап 2.6
Сократим общий множитель и .
Этап 2.6.1
Вынесем множитель из .
Этап 2.6.2
Сократим общие множители.
Этап 2.6.2.1
Возведем в степень .
Этап 2.6.2.2
Вынесем множитель из .
Этап 2.6.2.3
Сократим общий множитель.
Этап 2.6.2.4
Перепишем это выражение.
Этап 2.6.2.5
Разделим на .
Этап 3
Этап 3.1
Применим свойство дистрибутивности.
Этап 3.2
Объединим термины.
Этап 3.2.1
Умножим на .
Этап 3.2.2
Добавим и .
Этап 3.3
Изменим порядок членов.