Введите задачу...
Математический анализ Примеры
Этап 1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2
Этап 2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 2.3
Заменим все вхождения на .
Этап 3
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 4
Этап 4.1
Перепишем в виде .
Этап 4.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.3
Умножим.
Этап 4.3.1
Умножим на .
Этап 4.3.2
Умножим на .
Этап 4.4
Поскольку является константой относительно , производная относительно равна .
Этап 4.5
Упростим выражение.
Этап 4.5.1
Умножим на .
Этап 4.5.2
Добавим и .
Этап 5
Этап 5.1
Перенесем .
Этап 5.2
Применим правило степени для объединения показателей.
Этап 5.3
Добавим и .
Этап 6
Упростим .
Этап 7
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 8
Этап 8.1
Изменим порядок членов.
Этап 8.2
Изменим порядок множителей в .