Математический анализ Примеры

Trovare la Derivata - d/dx y=x^5 натуральный логарифм от x-1/3x^3
Этап 1
По правилу суммы производная по имеет вид .
Этап 2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2.2
Производная по равна .
Этап 2.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.4
Объединим и .
Этап 2.5
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 2.5.1
Вынесем множитель из .
Этап 2.5.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 2.5.2.1
Возведем в степень .
Этап 2.5.2.2
Вынесем множитель из .
Этап 2.5.2.3
Сократим общий множитель.
Этап 2.5.2.4
Перепишем это выражение.
Этап 2.5.2.5
Разделим на .
Этап 3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 3.1
Поскольку является константой относительно , производная по равна .
Этап 3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3
Умножим на .
Этап 3.4
Объединим и .
Этап 3.5
Объединим и .
Этап 3.6
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 3.6.1
Вынесем множитель из .
Этап 3.6.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 3.6.2.1
Вынесем множитель из .
Этап 3.6.2.2
Сократим общий множитель.
Этап 3.6.2.3
Перепишем это выражение.
Этап 3.6.2.4
Разделим на .
Этап 4
Изменим порядок членов.