Введите задачу...
Математический анализ Примеры
Этап 1
По правилу суммы производная по имеет вид .
Этап 2
Этап 2.1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 2.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3
Этап 3.1
Поскольку является константой относительно , производная по равна .
Этап 3.2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 3.3
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.5
Умножим на .
Этап 4
Этап 4.1
Поскольку является константой относительно , производная по равна .
Этап 4.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 5
Этап 5.1
Применим свойство дистрибутивности.
Этап 5.2
Объединим термины.
Этап 5.2.1
Вычтем из .
Этап 5.2.1.1
Перенесем .
Этап 5.2.1.2
Вычтем из .
Этап 5.2.2
Добавим и .
Этап 5.2.3
Добавим и .
Этап 5.2.4
Добавим и .
Этап 5.3
Изменим порядок множителей в .
Этап 5.4
Изменим порядок множителей в .