Введите задачу...
Математический анализ Примеры
Этап 1
Продифференцируем обе части уравнения.
Этап 2
Производная по равна .
Этап 3
Этап 3.1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 3.2
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 3.3
Продифференцируем, используя правило степени.
Этап 3.3.1
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3.2
Умножим на .
Этап 3.4
Перепишем в виде .
Этап 3.5
Поскольку является константой относительно , производная относительно равна .
Этап 3.6
Упростим выражение.
Этап 3.6.1
Умножим на .
Этап 3.6.2
Добавим и .
Этап 4
Преобразуем уравнение, приравняв левую часть к правой.
Этап 5
Этап 5.1
Умножим обе части на .
Этап 5.2
Упростим правую часть.
Этап 5.2.1
Упростим .
Этап 5.2.1.1
Сократим общий множитель .
Этап 5.2.1.1.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 5.2.1.1.2
Сократим общий множитель.
Этап 5.2.1.1.3
Перепишем это выражение.
Этап 5.2.1.2
Применим свойство дистрибутивности.
Этап 5.2.1.3
Умножим .
Этап 5.2.1.3.1
Умножим на .
Этап 5.2.1.3.2
Умножим на .
Этап 5.2.1.4
Изменим порядок и .
Этап 5.2.1.5
Изменим порядок и .
Этап 5.3
Решим относительно .
Этап 5.3.1
Вычтем из обеих частей уравнения.
Этап 5.3.2
Вынесем множитель из .
Этап 5.3.2.1
Вынесем множитель из .
Этап 5.3.2.2
Вынесем множитель из .
Этап 5.3.2.3
Вынесем множитель из .
Этап 5.3.3
Перепишем в виде .
Этап 5.3.4
Разделим каждый член на и упростим.
Этап 5.3.4.1
Разделим каждый член на .
Этап 5.3.4.2
Упростим левую часть.
Этап 5.3.4.2.1
Сократим общий множитель .
Этап 5.3.4.2.1.1
Сократим общий множитель.
Этап 5.3.4.2.1.2
Разделим на .
Этап 5.3.4.3
Упростим правую часть.
Этап 5.3.4.3.1
Вынесем знак минуса перед дробью.
Этап 6
Заменим на .