Математический анализ Примеры

Этап 1
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 3
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 3.1
По правилу суммы производная по имеет вид .
Этап 3.2
Поскольку является константой относительно , производная относительно равна .
Этап 3.3
Добавим и .
Этап 3.4
Поскольку является константой относительно , производная по равна .
Этап 3.5
Умножим.
Нажмите для увеличения количества этапов...
Этап 3.5.1
Умножим на .
Этап 3.5.2
Умножим на .
Этап 4
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 5
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 5.1
Применим правило степени для объединения показателей.
Этап 5.2
Добавим и .
Этап 6
Упростим.
Нажмите для увеличения количества этапов...
Этап 6.1
Применим свойство дистрибутивности.
Этап 6.2
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 6.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 6.2.1.1
Умножим на .
Этап 6.2.1.2
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 6.2.1.2.1
Перенесем .
Этап 6.2.1.2.2
Применим правило степени для объединения показателей.
Этап 6.2.1.2.3
Добавим и .
Этап 6.2.2
Объединим противоположные члены в .
Нажмите для увеличения количества этапов...
Этап 6.2.2.1
Добавим и .
Этап 6.2.2.2
Добавим и .