Математический анализ Примеры

Найти горизонтальную касательную y=3x^2+4x
Этап 1
Примем как функцию .
Этап 2
Найдем производную.
Нажмите для увеличения количества этапов...
Этап 2.1
По правилу суммы производная по имеет вид .
Этап 2.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.3
Умножим на .
Этап 2.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.3
Умножим на .
Этап 3
Приравняем производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 3.1
Вычтем из обеих частей уравнения.
Этап 3.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Разделим каждый член на .
Этап 3.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.2.1.1
Сократим общий множитель.
Этап 3.2.2.1.2
Разделим на .
Этап 3.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.3.1
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 3.2.3.1.1
Вынесем множитель из .
Этап 3.2.3.1.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 3.2.3.1.2.1
Вынесем множитель из .
Этап 3.2.3.1.2.2
Сократим общий множитель.
Этап 3.2.3.1.2.3
Перепишем это выражение.
Этап 3.2.3.2
Вынесем знак минуса перед дробью.
Этап 4
Решим исходную функцию в точке .
Нажмите для увеличения количества этапов...
Этап 4.1
Заменим в этом выражении переменную на .
Этап 4.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 4.2.1.1
Применим правило степени для распределения показателей.
Нажмите для увеличения количества этапов...
Этап 4.2.1.1.1
Применим правило умножения к .
Этап 4.2.1.1.2
Применим правило умножения к .
Этап 4.2.1.2
Возведем в степень .
Этап 4.2.1.3
Умножим на .
Этап 4.2.1.4
Возведем в степень .
Этап 4.2.1.5
Возведем в степень .
Этап 4.2.1.6
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.2.1.6.1
Вынесем множитель из .
Этап 4.2.1.6.2
Сократим общий множитель.
Этап 4.2.1.6.3
Перепишем это выражение.
Этап 4.2.1.7
Умножим .
Нажмите для увеличения количества этапов...
Этап 4.2.1.7.1
Умножим на .
Этап 4.2.1.7.2
Объединим и .
Этап 4.2.1.7.3
Умножим на .
Этап 4.2.1.8
Вынесем знак минуса перед дробью.
Этап 4.2.2
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 4.2.2.1
Объединим числители над общим знаменателем.
Этап 4.2.2.2
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 4.2.2.2.1
Вычтем из .
Этап 4.2.2.2.2
Вынесем знак минуса перед дробью.
Этап 4.2.3
Окончательный ответ: .
Этап 5
Горизонтальная касательной к графику функции : .
Этап 6