Математический анализ Примеры

Найти интервалы убывания и возрастания с помощью производных f(x)=1/4x^4-2x^2
Этап 1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.1
По правилу суммы производная по имеет вид .
Этап 1.1.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2.3
Объединим и .
Этап 1.1.2.4
Объединим и .
Этап 1.1.2.5
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.1.2.5.1
Сократим общий множитель.
Этап 1.1.2.5.2
Разделим на .
Этап 1.1.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.3.3
Умножим на .
Этап 1.2
Первая производная по равна .
Этап 2
Приравняем первую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 2.1
Пусть первая производная равна .
Этап 2.2
Разложим левую часть уравнения на множители.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 2.2.1.1
Вынесем множитель из .
Этап 2.2.1.2
Вынесем множитель из .
Этап 2.2.1.3
Вынесем множитель из .
Этап 2.2.2
Перепишем в виде .
Этап 2.2.3
Разложим на множители.
Нажмите для увеличения количества этапов...
Этап 2.2.3.1
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 2.2.3.2
Избавимся от ненужных скобок.
Этап 2.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 2.4
Приравняем к .
Этап 2.5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.5.1
Приравняем к .
Этап 2.5.2
Вычтем из обеих частей уравнения.
Этап 2.6
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.6.1
Приравняем к .
Этап 2.6.2
Добавим к обеим частям уравнения.
Этап 2.7
Окончательным решением являются все значения, при которых верно.
Этап 3
Значения, при которых производная равна : .
Этап 4
Разобьем на отдельные интервалы вокруг значений , при которых производная равна или не определена.
Этап 5
Подставим значение из интервала в производную, чтобы определить, возрастает функция или убывает.
Нажмите для увеличения количества этапов...
Этап 5.1
Заменим в этом выражении переменную на .
Этап 5.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 5.2.1.1
Возведем в степень .
Этап 5.2.1.2
Умножим на .
Этап 5.2.2
Добавим и .
Этап 5.2.3
Окончательный ответ: .
Этап 5.3
При производная имеет вид . Поскольку это отрицательная величина, функция убывает в диапазоне .
Убывание на , так как
Убывание на , так как
Этап 6
Подставим значение из интервала в производную, чтобы определить, возрастает функция или убывает.
Нажмите для увеличения количества этапов...
Этап 6.1
Заменим в этом выражении переменную на .
Этап 6.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 6.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 6.2.1.1
Возведем в степень .
Этап 6.2.1.2
Умножим на .
Этап 6.2.2
Добавим и .
Этап 6.2.3
Окончательный ответ: .
Этап 6.3
При производная имеет вид . Поскольку это положительная величина, функция возрастает в диапазоне .
Возрастание в области , так как
Возрастание в области , так как
Этап 7
Подставим значение из интервала в производную, чтобы определить, возрастает функция или убывает.
Нажмите для увеличения количества этапов...
Этап 7.1
Заменим в этом выражении переменную на .
Этап 7.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 7.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 7.2.1.1
Единица в любой степени равна единице.
Этап 7.2.1.2
Умножим на .
Этап 7.2.2
Вычтем из .
Этап 7.2.3
Окончательный ответ: .
Этап 7.3
При производная имеет вид . Поскольку это отрицательная величина, функция убывает в диапазоне .
Убывание на , так как
Убывание на , так как
Этап 8
Подставим значение из интервала в производную, чтобы определить, возрастает функция или убывает.
Нажмите для увеличения количества этапов...
Этап 8.1
Заменим в этом выражении переменную на .
Этап 8.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 8.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 8.2.1.1
Возведем в степень .
Этап 8.2.1.2
Умножим на .
Этап 8.2.2
Вычтем из .
Этап 8.2.3
Окончательный ответ: .
Этап 8.3
При производная имеет вид . Поскольку это положительная величина, функция возрастает в диапазоне .
Возрастание в области , так как
Возрастание в области , так как
Этап 9
Перечислим интервалы, на которых функция возрастает и убывает.
Возрастание в области:
Убывание на:
Этап 10