Математический анализ Примеры

Найти точки перегиба y=x-sin(x)
Этап 1
Запишем в виде функции.
Этап 2
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 2.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 2.1.1
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 2.1.1.1
По правилу суммы производная по имеет вид .
Этап 2.1.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.1.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.1.2.2
Производная по равна .
Этап 2.2
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 2.2.1.1
По правилу суммы производная по имеет вид .
Этап 2.2.1.2
Поскольку является константой относительно , производная относительно равна .
Этап 2.2.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.2.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2.2.2
Производная по равна .
Этап 2.2.2.3
Умножим на .
Этап 2.2.2.4
Умножим на .
Этап 2.2.3
Добавим и .
Этап 2.3
Вторая производная по равна .
Этап 3
Приравняем вторую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 3.1
Пусть вторая производная равна .
Этап 3.2
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Этап 3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Точное значение : .
Этап 3.4
Функция синуса положительна в первом и втором квадрантах. Для нахождения второго решения вычтем угол приведения из и найдем решение во втором квадранте.
Этап 3.5
Вычтем из .
Этап 3.6
Найдем период .
Нажмите для увеличения количества этапов...
Этап 3.6.1
Период функции можно вычислить по формуле .
Этап 3.6.2
Заменим на в формуле периода.
Этап 3.6.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 3.6.4
Разделим на .
Этап 3.7
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
Этап 3.8
Объединим ответы.
, для любого целого
, для любого целого
Этап 4
Подставляя в , найдем точку . Эта точка может быть точкой перегиба.
Этап 5
Разобьем на интервалы вокруг точек, которые могут быть точками перегиба.
Этап 6
Подставим значение из интервала во вторую производную, чтобы определить, возрастает она или убывает.
Нажмите для увеличения количества этапов...
Этап 6.1
Заменим в этом выражении переменную на .
Этап 6.2
Окончательный ответ: .
Этап 6.3
При вторая производная имеет вид . Поскольку это отрицательная величина, вторая производная уменьшается на интервале .
Убывание на , так как
Убывание на , так как
Этап 7
Подставим значение из интервала во вторую производную, чтобы определить, возрастает она или убывает.
Нажмите для увеличения количества этапов...
Этап 7.1
Заменим в этом выражении переменную на .
Этап 7.2
Окончательный ответ: .
Этап 7.3
При вторая производная имеет вид . Поскольку это положительная величина, вторая производная возрастает на интервале .
Возрастание в области , так как
Возрастание в области , так как
Этап 8
Точка перегиба — это точка на кривой, в которой вогнутость меняет знак с плюса на минус или с минуса на плюс. В этом случае точкой перегиба является точка .
Этап 9