Математический анализ Примеры

Вычислим интеграл интеграл cos(4x)^3 по x
Этап 1
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 1.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 1.1.1
Дифференцируем .
Этап 1.1.2
Поскольку является константой относительно , производная по равна .
Этап 1.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.4
Умножим на .
Этап 1.2
Переформулируем задачу с помощью и .
Этап 2
Объединим и .
Этап 3
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 4
Вынесем за скобки.
Этап 5
Используя формулы Пифагора, запишем в виде .
Этап 6
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 6.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 6.1.1
Дифференцируем .
Этап 6.1.2
Производная по равна .
Этап 6.2
Переформулируем задачу с помощью и .
Этап 7
Разделим данный интеграл на несколько интегралов.
Этап 8
Применим правило дифференцирования постоянных функций.
Этап 9
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 10
По правилу степени интеграл по имеет вид .
Этап 11
Упростим.
Этап 12
Выполним обратную подстановку для каждой подставленной переменной интегрирования.
Нажмите для увеличения количества этапов...
Этап 12.1
Заменим все вхождения на .
Этап 12.2
Заменим все вхождения на .
Этап 13
Упростим.
Нажмите для увеличения количества этапов...
Этап 13.1
Объединим и .
Этап 13.2
Применим свойство дистрибутивности.
Этап 13.3
Объединим и .
Этап 13.4
Умножим .
Нажмите для увеличения количества этапов...
Этап 13.4.1
Умножим на .
Этап 13.4.2
Умножим на .
Этап 14
Изменим порядок членов.