Математический анализ Примеры

Вычислим интеграл интеграл (x^2-1)/(x^3+x) по x
Этап 1
Запишем дробь, используя разложение на элементарные дроби.
Нажмите для увеличения количества этапов...
Этап 1.1
Разложим дробь и умножим на общий знаменатель.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Разложим дробь на множители.
Нажмите для увеличения количества этапов...
Этап 1.1.1.1
Перепишем в виде .
Этап 1.1.1.2
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 1.1.1.3
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 1.1.1.3.1
Вынесем множитель из .
Этап 1.1.1.3.2
Возведем в степень .
Этап 1.1.1.3.3
Вынесем множитель из .
Этап 1.1.1.3.4
Вынесем множитель из .
Этап 1.1.2
Для каждого множителя в знаменателе создадим новую дробь, используя множитель в качестве знаменателя, а неизвестное значение — в качестве числителя. Поскольку у множителя 2-й порядок, в числителе должно быть членов. Количество необходимых членов в числителе всегда равно порядку множителя в знаменателе.
Этап 1.1.3
Умножим каждую дробь в уравнении на знаменатель исходного выражения. В этом случае знаменатель равен .
Этап 1.1.4
Сократим выражение, путем отбрасывания общих множителей.
Нажмите для увеличения количества этапов...
Этап 1.1.4.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.1.4.1.1
Сократим общий множитель.
Этап 1.1.4.1.2
Перепишем это выражение.
Этап 1.1.4.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.1.4.2.1
Сократим общий множитель.
Этап 1.1.4.2.2
Разделим на .
Этап 1.1.5
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 1.1.5.1
Применим свойство дистрибутивности.
Этап 1.1.5.2
Применим свойство дистрибутивности.
Этап 1.1.5.3
Применим свойство дистрибутивности.
Этап 1.1.6
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Этап 1.1.6.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.1.6.1.1
Умножим на .
Этап 1.1.6.1.2
Перенесем влево от .
Этап 1.1.6.1.3
Перепишем в виде .
Этап 1.1.6.1.4
Умножим на .
Этап 1.1.6.1.5
Умножим на .
Этап 1.1.6.2
Добавим и .
Этап 1.1.6.3
Добавим и .
Этап 1.1.7
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.1.7.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.1.7.1.1
Сократим общий множитель.
Этап 1.1.7.1.2
Разделим на .
Этап 1.1.7.2
Применим свойство дистрибутивности.
Этап 1.1.7.3
Умножим на .
Этап 1.1.7.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.1.7.4.1
Сократим общий множитель.
Этап 1.1.7.4.2
Разделим на .
Этап 1.1.7.5
Применим свойство дистрибутивности.
Этап 1.1.7.6
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 1.1.7.6.1
Перенесем .
Этап 1.1.7.6.2
Умножим на .
Этап 1.1.8
Перенесем .
Этап 1.2
Составим уравнения для переменных элементарной дроби и используем их для создания системы уравнений.
Нажмите для увеличения количества этапов...
Этап 1.2.1
Составим уравнение для переменных элементарной дроби, приравняв коэффициенты из каждой части уравнения. Чтобы уравнение было верным, эквивалентные коэффициенты в каждой части уравнения должны быть равны.
Этап 1.2.2
Составим уравнение для переменных элементарной дроби, приравняв коэффициенты из каждой части уравнения. Чтобы уравнение было верным, эквивалентные коэффициенты в каждой части уравнения должны быть равны.
Этап 1.2.3
Составим уравнение для переменных элементарной дроби, приравняв коэффициенты членов, не содержащих . Чтобы уравнение было верным, эквивалентные коэффициенты в каждой части уравнения должны быть равны.
Этап 1.2.4
Составим систему уравнений, чтобы найти коэффициенты элементарных дробей.
Этап 1.3
Решим систему уравнений.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Перепишем уравнение в виде .
Этап 1.3.2
Перепишем уравнение в виде .
Этап 1.3.3
Заменим все вхождения на во всех уравнениях.
Нажмите для увеличения количества этапов...
Этап 1.3.3.1
Заменим все вхождения в на .
Этап 1.3.3.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.3.3.2.1
Избавимся от скобок.
Этап 1.3.4
Решим относительно в .
Нажмите для увеличения количества этапов...
Этап 1.3.4.1
Перепишем уравнение в виде .
Этап 1.3.4.2
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 1.3.4.2.1
Добавим к обеим частям уравнения.
Этап 1.3.4.2.2
Добавим и .
Этап 1.3.5
Решим систему уравнений.
Этап 1.3.6
Перечислим все решения.
Этап 1.4
Заменим каждый коэффициент элементарной дроби в значениями, найденными для , и .
Этап 1.5
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.5.1
Избавимся от скобок.
Этап 1.5.2
Добавим и .
Этап 1.5.3
Вынесем знак минуса перед дробью.
Этап 2
Разделим данный интеграл на несколько интегралов.
Этап 3
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 4
Интеграл по имеет вид .
Этап 5
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 6
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 6.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 6.1.1
Дифференцируем .
Этап 6.1.2
По правилу суммы производная по имеет вид .
Этап 6.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 6.1.4
Поскольку является константой относительно , производная относительно равна .
Этап 6.1.5
Добавим и .
Этап 6.2
Переформулируем задачу с помощью и .
Этап 7
Упростим.
Нажмите для увеличения количества этапов...
Этап 7.1
Умножим на .
Этап 7.2
Перенесем влево от .
Этап 8
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 9
Упростим.
Нажмите для увеличения количества этапов...
Этап 9.1
Объединим и .
Этап 9.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 9.2.1
Сократим общий множитель.
Этап 9.2.2
Перепишем это выражение.
Этап 9.3
Умножим на .
Этап 10
Интеграл по имеет вид .
Этап 11
Упростим.
Этап 12
Заменим все вхождения на .