Введите задачу...
Математический анализ Примеры
Этап 1
Поскольку является константой относительно , производная по равна .
Этап 2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 3
Производная по равна .
Этап 4
Возведем в степень .
Этап 5
Возведем в степень .
Этап 6
Применим правило степени для объединения показателей.
Этап 7
Добавим и .
Этап 8
Производная по равна .
Этап 9
Возведем в степень .
Этап 10
Возведем в степень .
Этап 11
Применим правило степени для объединения показателей.
Этап 12
Добавим и .
Этап 13
Этап 13.1
Применим свойство дистрибутивности.
Этап 13.2
Умножим на .