Математический анализ Примеры

Оценить предел предел ((x+h)^2-x^2)/h, если h стремится к 0
Этап 1
Применим правило Лопиталя.
Нажмите для увеличения количества этапов...
Этап 1.1
Найдем предел числителя и предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Возьмем предел числителя и предел знаменателя.
Этап 1.1.2
Найдем предел числителя.
Нажмите для увеличения количества этапов...
Этап 1.1.2.1
Вычислим предел.
Нажмите для увеличения количества этапов...
Этап 1.1.2.1.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.1.2.1.2
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 1.1.2.1.3
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.1.2.1.4
Найдем предел , который является константой по мере приближения к .
Этап 1.1.2.1.5
Найдем предел , который является константой по мере приближения к .
Этап 1.1.2.2
Найдем предел , подставив значение для .
Этап 1.1.2.3
Объединим противоположные члены в .
Нажмите для увеличения количества этапов...
Этап 1.1.2.3.1
Добавим и .
Этап 1.1.2.3.2
Вычтем из .
Этап 1.1.3
Найдем предел , подставив значение для .
Этап 1.1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 1.3
Найдем производную числителя и знаменателя.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Продифференцируем числитель и знаменатель.
Этап 1.3.2
Перепишем в виде .
Этап 1.3.3
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 1.3.3.1
Применим свойство дистрибутивности.
Этап 1.3.3.2
Применим свойство дистрибутивности.
Этап 1.3.3.3
Применим свойство дистрибутивности.
Этап 1.3.4
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Этап 1.3.4.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.3.4.1.1
Умножим на .
Этап 1.3.4.1.2
Умножим на .
Этап 1.3.4.2
Добавим и .
Нажмите для увеличения количества этапов...
Этап 1.3.4.2.1
Изменим порядок и .
Этап 1.3.4.2.2
Добавим и .
Этап 1.3.5
По правилу суммы производная по имеет вид .
Этап 1.3.6
Поскольку является константой относительно , производная относительно равна .
Этап 1.3.7
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.3.7.1
Поскольку является константой относительно , производная по равна .
Этап 1.3.7.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.7.3
Умножим на .
Этап 1.3.8
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.9
Поскольку является константой относительно , производная относительно равна .
Этап 1.3.10
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.3.10.1
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 1.3.10.1.1
Добавим и .
Этап 1.3.10.1.2
Добавим и .
Этап 1.3.10.2
Изменим порядок членов.
Этап 1.3.11
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.4
Разделим на .
Этап 2
Вычислим предел.
Нажмите для увеличения количества этапов...
Этап 2.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 2.2
Вынесем член из-под знака предела, так как он не зависит от .
Этап 2.3
Найдем предел , который является константой по мере приближения к .
Этап 3
Найдем предел , подставив значение для .
Этап 4
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 4.1
Умножим на .
Этап 4.2
Добавим и .