Математический анализ Примеры

Найти локальный максимум и минимум f(x) = natural log of x^4+27
Этап 1
Найдем первую производную функции.
Нажмите для увеличения количества этапов...
Этап 1.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.1.1
Чтобы применить цепное правило, зададим как .
Этап 1.1.2
Производная по равна .
Этап 1.1.3
Заменим все вхождения на .
Этап 1.2
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 1.2.1
По правилу суммы производная по имеет вид .
Этап 1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2.3
Поскольку является константой относительно , производная относительно равна .
Этап 1.2.4
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 1.2.4.1
Добавим и .
Этап 1.2.4.2
Объединим и .
Этап 1.2.4.3
Объединим и .
Этап 2
Найдем вторую производную функции.
Нажмите для увеличения количества этапов...
Этап 2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 2.3
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.2
Перенесем влево от .
Этап 2.3.3
По правилу суммы производная по имеет вид .
Этап 2.3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.5
Поскольку является константой относительно , производная относительно равна .
Этап 2.3.6
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 2.3.6.1
Добавим и .
Этап 2.3.6.2
Умножим на .
Этап 2.4
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 2.4.1
Перенесем .
Этап 2.4.2
Применим правило степени для объединения показателей.
Этап 2.4.3
Добавим и .
Этап 2.5
Объединим и .
Этап 2.6
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.6.1
Применим свойство дистрибутивности.
Этап 2.6.2
Применим свойство дистрибутивности.
Этап 2.6.3
Применим свойство дистрибутивности.
Этап 2.6.4
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 2.6.4.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.6.4.1.1
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 2.6.4.1.1.1
Перенесем .
Этап 2.6.4.1.1.2
Применим правило степени для объединения показателей.
Этап 2.6.4.1.1.3
Добавим и .
Этап 2.6.4.1.2
Умножим на .
Этап 2.6.4.1.3
Умножим на .
Этап 2.6.4.1.4
Умножим на .
Этап 2.6.4.1.5
Умножим на .
Этап 2.6.4.2
Вычтем из .
Этап 3
Чтобы найти локальные максимумы и минимумы функции, приравняем производную к и решим полученное уравнение.
Этап 4
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 4.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 4.1.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 4.1.1.1
Чтобы применить цепное правило, зададим как .
Этап 4.1.1.2
Производная по равна .
Этап 4.1.1.3
Заменим все вхождения на .
Этап 4.1.2
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 4.1.2.1
По правилу суммы производная по имеет вид .
Этап 4.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.1.2.3
Поскольку является константой относительно , производная относительно равна .
Этап 4.1.2.4
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 4.1.2.4.1
Добавим и .
Этап 4.1.2.4.2
Объединим и .
Этап 4.1.2.4.3
Объединим и .
Этап 4.2
Первая производная по равна .
Этап 5
Приравняем первую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 5.1
Пусть первая производная равна .
Этап 5.2
Приравняем числитель к нулю.
Этап 5.3
Решим уравнение относительно .
Нажмите для увеличения количества этапов...
Этап 5.3.1
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 5.3.1.1
Разделим каждый член на .
Этап 5.3.1.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 5.3.1.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.3.1.2.1.1
Сократим общий множитель.
Этап 5.3.1.2.1.2
Разделим на .
Этап 5.3.1.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 5.3.1.3.1
Разделим на .
Этап 5.3.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 5.3.3
Упростим .
Нажмите для увеличения количества этапов...
Этап 5.3.3.1
Перепишем в виде .
Этап 5.3.3.2
Вынесем члены из-под знака корня, предполагая, что это вещественные числа.
Этап 6
Найдем значения, при которых производная не определена.
Нажмите для увеличения количества этапов...
Этап 6.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 7
Критические точки, которые необходимо вычислить.
Этап 8
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 9
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 9.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 9.1.1
Возведение в любую положительную степень дает .
Этап 9.1.2
Умножим на .
Этап 9.1.3
Возведение в любую положительную степень дает .
Этап 9.1.4
Умножим на .
Этап 9.1.5
Добавим и .
Этап 9.2
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 9.2.1
Возведение в любую положительную степень дает .
Этап 9.2.2
Добавим и .
Этап 9.2.3
Возведем в степень .
Этап 9.3
Разделим на .
Этап 10
Поскольку есть по крайней мере одна точка с или неопределенной второй производной, изучим изменение знака первой производной.
Нажмите для увеличения количества этапов...
Этап 10.1
Разобьем на отдельные интервалы в окрестности значений , при которых первая производная равна или не определена.
Этап 10.2
Подставим любое число такое, что , из интервала в первую производную , чтобы проверить знак результата (отрицательный или положительный).
Нажмите для увеличения количества этапов...
Этап 10.2.1
Заменим в этом выражении переменную на .
Этап 10.2.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 10.2.2.1
Возведем в степень .
Этап 10.2.2.2
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 10.2.2.2.1
Возведем в степень .
Этап 10.2.2.2.2
Добавим и .
Этап 10.2.2.3
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 10.2.2.3.1
Умножим на .
Этап 10.2.2.3.2
Вынесем знак минуса перед дробью.
Этап 10.2.2.4
Окончательный ответ: .
Этап 10.3
Подставим любое число такое, что , из интервала в первую производную , чтобы проверить знак результата (отрицательный или положительный).
Нажмите для увеличения количества этапов...
Этап 10.3.1
Заменим в этом выражении переменную на .
Этап 10.3.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 10.3.2.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 10.3.2.1.1
Перепишем в виде .
Этап 10.3.2.1.2
Применим правило степени для объединения показателей.
Этап 10.3.2.1.3
Добавим и .
Этап 10.3.2.2
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 10.3.2.2.1
Возведем в степень .
Этап 10.3.2.2.2
Добавим и .
Этап 10.3.2.3
Возведем в степень .
Этап 10.3.2.4
Окончательный ответ: .
Этап 10.4
Поскольку первая производная меняет знак с отрицательного на положительный в окрестности ,  — локальный минимум.
 — локальный минимум
 — локальный минимум
Этап 11