Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Возьмем предел числителя и предел знаменателя.
Этап 1.2
Найдем предел числителя.
Этап 1.2.1
Перенесем предел внутрь тригонометрической функции, поскольку косинус является непрерывной функцией.
Этап 1.2.2
Найдем предел , подставив значение для .
Этап 1.2.3
Точное значение : .
Этап 1.3
Найдем предел знаменателя.
Этап 1.3.1
Вычислим предел.
Этап 1.3.1.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.3.1.2
Найдем предел , который является константой по мере приближения к .
Этап 1.3.1.3
Перенесем предел внутрь тригонометрической функции, поскольку синус является непрерывной функцией.
Этап 1.3.2
Найдем предел , подставив значение для .
Этап 1.3.3
Упростим ответ.
Этап 1.3.3.1
Упростим каждый член.
Этап 1.3.3.1.1
Точное значение : .
Этап 1.3.3.1.2
Умножим на .
Этап 1.3.3.2
Вычтем из .
Этап 1.3.3.3
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.3.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 3
Этап 3.1
Продифференцируем числитель и знаменатель.
Этап 3.2
Производная по равна .
Этап 3.3
По правилу суммы производная по имеет вид .
Этап 3.4
Поскольку является константой относительно , производная относительно равна .
Этап 3.5
Найдем значение .
Этап 3.5.1
Поскольку является константой относительно , производная по равна .
Этап 3.5.2
Производная по равна .
Этап 3.6
Вычтем из .
Этап 4
Деление двух отрицательных значений дает положительное значение.
Этап 5
Переведем в .
Этап 6
Рассмотрим левосторонний предел.
Этап 7
Когда стремится к слева, функция неограниченно возрастает.
Этап 8
Рассмотрим правосторонний предел.
Этап 9
Когда стремится к справа, функция неограниченно убывает.
Этап 10
Так как правосторонний и левосторонний пределы не равны, предел не существует.