Математический анализ Примеры

Оценить сумму сумма 2^(i-1) от i=1 до 7
Этап 1
Сумму конечного геометрического ряда можно найти по формуле , где  — первый член, а  — отношение между последовательными членами.
Этап 2
Найдем отношение последовательных членов, подставив в формулу и упростив.
Нажмите для увеличения количества этапов...
Этап 2.1
Подставим и в формулу для .
Этап 2.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 2.2.1.1
Вынесем множитель из .
Этап 2.2.1.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 2.2.1.2.1
Умножим на .
Этап 2.2.1.2.2
Сократим общий множитель.
Этап 2.2.1.2.3
Перепишем это выражение.
Этап 2.2.1.2.4
Разделим на .
Этап 2.2.2
Добавим и .
Этап 2.2.3
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.2.3.1
Применим свойство дистрибутивности.
Этап 2.2.3.2
Умножим на .
Этап 2.2.4
Вычтем из .
Этап 2.2.5
Добавим и .
Этап 2.2.6
Найдем экспоненту.
Этап 3
Найдем первый член ряда, подставив начальное значение и упростив.
Нажмите для увеличения количества этапов...
Этап 3.1
Подставим вместо в .
Этап 3.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Вычтем из .
Этап 3.2.2
Любое число в степени равно .
Этап 4
Подставим знаменатель, первый член и количество членов геометрической прогрессии в формулу суммы.
Этап 5
Упростим.
Нажмите для увеличения количества этапов...
Этап 5.1
Умножим на .
Этап 5.2
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Возведем в степень .
Этап 5.2.2
Умножим на .
Этап 5.2.3
Вычтем из .
Этап 5.3
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 5.3.1
Умножим на .
Этап 5.3.2
Вычтем из .
Этап 5.4
Разделим на .