Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Вынесем множитель из .
Этап 1.1.1
Вынесем множитель из .
Этап 1.1.2
Вынесем множитель из .
Этап 1.1.3
Вынесем множитель из .
Этап 1.2
Сократим общий множитель и .
Этап 1.2.1
Вынесем множитель из .
Этап 1.2.2
Сократим общие множители.
Этап 1.2.2.1
Возведем в степень .
Этап 1.2.2.2
Вынесем множитель из .
Этап 1.2.2.3
Сократим общий множитель.
Этап 1.2.2.4
Перепишем это выражение.
Этап 1.2.2.5
Разделим на .
Этап 2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 3
Этап 3.1
По правилу суммы производная по имеет вид .
Этап 3.2
Поскольку является константой относительно , производная по равна .
Этап 3.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.4
Умножим на .
Этап 3.5
Поскольку является константой относительно , производная относительно равна .
Этап 3.6
Упростим выражение.
Этап 3.6.1
Добавим и .
Этап 3.6.2
Перенесем влево от .
Этап 3.7
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.8
Упростим путем добавления членов.
Этап 3.8.1
Умножим на .
Этап 3.8.2
Добавим и .