Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Чтобы применить цепное правило, зададим как .
Этап 1.2
Производная по равна .
Этап 1.3
Заменим все вхождения на .
Этап 2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 3
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 5
Этап 5.1
Применим свойство дистрибутивности.
Этап 5.2
Объединим термины.
Этап 5.2.1
Объединим и .
Этап 5.2.2
Объединим и .
Этап 5.2.3
Сократим общий множитель .
Этап 5.2.3.1
Сократим общий множитель.
Этап 5.2.3.2
Перепишем это выражение.
Этап 5.2.4
Сократим общий множитель .
Этап 5.2.4.1
Сократим общий множитель.
Этап 5.2.4.2
Перепишем это выражение.
Этап 5.2.5
Объединим и .
Этап 5.2.6
Объединим и .
Этап 5.2.7
Объединим и .
Этап 5.2.8
Сократим общий множитель .
Этап 5.2.8.1
Сократим общий множитель.
Этап 5.2.8.2
Перепишем это выражение.
Этап 5.2.9
Сократим общий множитель и .
Этап 5.2.9.1
Вынесем множитель из .
Этап 5.2.9.2
Сократим общие множители.
Этап 5.2.9.2.1
Вынесем множитель из .
Этап 5.2.9.2.2
Сократим общий множитель.
Этап 5.2.9.2.3
Перепишем это выражение.
Этап 5.3
Изменим порядок членов.