Математический анализ Примеры

Trovare la Derivata - d/d@VAR f(x)=(3x-8) натуральный логарифм от 2x^5+3
Этап 1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2
Производная по равна .
Этап 2.3
Заменим все вхождения на .
Этап 3
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 3.1
По правилу суммы производная по имеет вид .
Этап 3.2
Поскольку является константой относительно , производная по равна .
Этап 3.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.4
Умножим на .
Этап 3.5
Поскольку является константой относительно , производная относительно равна .
Этап 3.6
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 3.6.1
Добавим и .
Этап 3.6.2
Объединим и .
Этап 3.6.3
Объединим и .
Этап 3.6.4
Перенесем влево от .
Этап 3.7
По правилу суммы производная по имеет вид .
Этап 3.8
Поскольку является константой относительно , производная по равна .
Этап 3.9
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.10
Умножим на .
Этап 3.11
Поскольку является константой относительно , производная относительно равна .
Этап 3.12
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 3.12.1
Добавим и .
Этап 3.12.2
Перенесем влево от .