Математический анализ Примеры

Trovare la Derivata - d/d@VAR f(x)=e^(-x) квадратный корень из x
Этап 1
С помощью запишем в виде .
Этап 2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 5
Объединим и .
Этап 6
Объединим числители над общим знаменателем.
Этап 7
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 7.1
Умножим на .
Этап 7.2
Вычтем из .
Этап 8
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 8.1
Вынесем знак минуса перед дробью.
Этап 8.2
Объединим и .
Этап 8.3
Объединим и .
Этап 8.4
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 9
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 9.1
Чтобы применить цепное правило, зададим как .
Этап 9.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 9.3
Заменим все вхождения на .
Этап 10
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 10.1
Поскольку является константой относительно , производная по равна .
Этап 10.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 10.3
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 10.3.1
Умножим на .
Этап 10.3.2
Перенесем влево от .
Этап 10.3.3
Перепишем в виде .
Этап 10.3.4
Изменим порядок членов.