Введите задачу...
Математический анализ Примеры
Этап 1
Пусть , где . Тогда . Заметим, что поскольку , выражение положительно.
Этап 2
Этап 2.1
Упростим .
Этап 2.1.1
Применим формулу Пифагора.
Этап 2.1.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 2.2
Упростим.
Этап 2.2.1
Возведем в степень .
Этап 2.2.2
Возведем в степень .
Этап 2.2.3
Применим правило степени для объединения показателей.
Этап 2.2.4
Добавим и .
Этап 3
Используем формулу половинного угла для записи в виде .
Этап 4
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 5
Разделим данный интеграл на несколько интегралов.
Этап 6
Применим правило дифференцирования постоянных функций.
Этап 7
Этап 7.1
Пусть . Найдем .
Этап 7.1.1
Дифференцируем .
Этап 7.1.2
Поскольку является константой относительно , производная по равна .
Этап 7.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 7.1.4
Умножим на .
Этап 7.2
Подставим нижнее предельное значение вместо в .
Этап 7.3
Умножим на .
Этап 7.4
Подставим верхнее предельное значение вместо в .
Этап 7.5
Сократим общий множитель .
Этап 7.5.1
Сократим общий множитель.
Этап 7.5.2
Перепишем это выражение.
Этап 7.6
Значения, найденные для и , будут использованы для вычисления данного определенного интеграла.
Этап 7.7
Переформулируем задачу, используя , и новые пределы интегрирования.
Этап 8
Объединим и .
Этап 9
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 10
Интеграл по имеет вид .
Этап 11
Этап 11.1
Найдем значение в и в .
Этап 11.2
Найдем значение в и в .
Этап 11.3
Добавим и .
Этап 12
Этап 12.1
Точное значение : .
Этап 12.2
Умножим на .
Этап 12.3
Добавим и .
Этап 12.4
Объединим и .
Этап 13
Этап 13.1
Объединим числители над общим знаменателем.
Этап 13.2
Упростим каждый член.
Этап 13.2.1
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте.
Этап 13.2.2
Точное значение : .
Этап 13.3
Добавим и .
Этап 13.4
Умножим .
Этап 13.4.1
Умножим на .
Этап 13.4.2
Умножим на .
Этап 14
Результат можно представить в различном виде.
Точная форма:
Десятичная форма:
Этап 15